2,286 research outputs found

    Non-magnetic impurities and in-gap bound states in topological insulators

    Get PDF
    In-gap bound states induced by non-magnetic impurities in various dimensional topological insulators are investigated based on a modified Dirac model that considers quadratic corrections to the mass term. Their existence and features greatly rely on the potential form of the impurity as well as the dimensionality of the topological insulator. It is analytically proven that the impurity potential modeled by the delta function can induce the bound states in one dimension (1D), but not in two and three. For a single non-magnetic impurity with a general isotropic potential, formal solutions are obtained and further numerical calculations are performed. In particular, the in-gap bound states induced by a non-magnetic impurity with isotropic Gaussian potentials in two-dimensional (2D) and three-dimensional (3D) topological insulators are numerically investigated. Information on how many in-gap bound states can be trapped by a non-magnetic Gaussian impurity is presented for the parameters from a series of topologically non-trivial materials. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.published_or_final_versio

    Vacancy-induced bound states in topological insulators

    Get PDF
    We present an exact solution of a modified Dirac equation for topological insulator in the presence of a hole or vacancy to demonstrate that vacancies can induce bound states in the band gap of topological insulators. They arise due to the Z 2 classification of time-reversal invariant insulators. Coexistence of the in-gap bound states and the edge or surface states in topological insulators suggests that imperfections may affect transport properties of topological insulators via additional bound states near the system boundary. © 2011 American Physical Society.published_or_final_versio

    The two PPX-GppA homologues from Mycobacterium tuberculosis have distinct biochemical activities

    Get PDF
    Inorganic polyphosphate (poly-P), guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp) are ubiquitous in bacteria. These molecules play a variety of important physiological roles associated with stress resistance, persistence, and virulence. In the bacterial pathogen Mycobacterium tuberculosis, the identities of the proteins responsible for the metabolism of polyphosphate and (p)ppGpp remain to be fully established. M. tuberculosis encodes two PPX-GppA homologues, Rv0496 (MTB-PPX1) and Rv1026, which share significant sequence similarity with bacterial exopolyphosphatase (PPX) and guanosine pentaphosphate 5′-phosphohydrolase (GPP) proteins. Here we delineate the respective biochemical activities of the Rv0496 and Rv1026 proteins and benchmark these against the activities of the PPX and GPP proteins from Escherichia coli. We demonstrate that Rv0496 functions as an exopolyphosphatase, showing a distinct preference for relatively short-chain poly-P substrates. In contrast, Rv1026 has no detectable exopolyphosphatase activities. Analogous to the E. coli PPX and GPP enzymes, the exopolyphosphatase activities of Rv0496 are inhibited by pppGpp and, to a lesser extent, by ppGpp alarmones, which are produced during the bacterial stringent response. However, neither Rv0496 nor Rv1026 have the ability to hydrolyze pppGpp to ppGpp; a reaction catalyzed by E. coli PPX and GPP. Both the Rv0496 and Rv1026 proteins have modest ATPase and to a lesser extent ADPase activities. pppGpp alarmones inhibit the ATPase activities of Rv1026 and, to a lesser extent, the ATPase activities of Rv0496. We conclude that PPX-GppA family proteins may not possess all the catalytic activities implied by their name and may play distinct biochemical roles involved in polyphosphate and (p)ppGpp metabolic pathways. © 2012 2012 Choi et al.published_or_final_versio

    A Comparison of Laser Ultrasonics and EMAT Texture Measurements in Aluminum Alloys

    Get PDF
    Ultrasonic techniques, which measure elastic anisotropy, have been used to study texture and plastic anisotropy of sheet materials. Ultrasonic velocity measurements can determine the orientation distribution coefficients (ODCs) W400, W420, and W440 which are used to describe crystallographic orientation distributions [1]. For steel sheets, strong correlations have been observed between ultrasonic velocity and the formability parameters r̄ and Δr [3]. The results for aluminum show a relationship between the ODC W440 and the degree of earing [2–3].</p

    A fresh method of DNA transformation to the seeds irradiated by 60Co without the use of antibiotic selection

    Get PDF
    To find out a simpler method that can directly transfer the aim gene into plant genomes, the purple medic seeds irradiated by 60Co with 0.375 Gy were transformed by linear DNA containing a β-glucuronidase (GUS) gene (as an aim gene), a betaine aldehyde dehydrogenase (BADH) gene (as a selectable marker) and two pairs of both CaMV35S promoter and Nos terminator. Subsequently, the seeds were planted and grown in perlite media watered with NaCl solution as a kind of selective compound. The results showed that, positive frequency of PCR identification by the GUS gene or the BADH gene was higher than 53.2 and 89.5% in T0 and T1 generations, while GUS staining rate was higher than 50%; whereas five T1 plants assayed by southern hybridization all showed positive reaction. In conclusion, by this method, transgenic plants may be easily obtained with the antibiotic markers for free; moreover, the plant regeneration-system must not be erected by directly transforming the seeds.Key words: DNA transformation, irradiated seeds, purple medic, salt screening

    Characterisation of GNSS Space Service Volume

    Get PDF
    There is increasing demand for navigation capability for space vehicles. The idea to extend the application of Global Navigation Satellite Systems (GNSS) from terrestrial to space applications by the use of main beam and side lobe signals has been shown to be feasible. In order to understand the performance and the potential space applications GNSS can support, this paper characterises the Space Service Volume (SSV) in terms of the four parameters of minimum received power, satellite visibility, pseudorange accuracy and Geometric Dilution of Precision (GDOP). This new definition enables the position errors to be estimated. An analytical methodology is proposed to characterise minimum received power for the worst location. Satellite visibility and GDOP are assessed based on grid points at different height layers (to capture the relationship between height and visibility) for single and multiple GNSS constellations, the former represented by BeiDou III (BDS III) and the latter, BDS III in various combinations with GPS, GLONASS and GALILEO. Additional simulation shows that GNSS can potentially support lunar exploration spacecraft at the Earth phasing orbit. This initial assessment of SSV shows the potential of GNSS for space vehicle navigation

    Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels

    Get PDF
    The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al

    Ultrasonic Monitoring of Recrystallization Textures in Aluminum

    Get PDF
    The present paper is an attempt to use ultrasonic velocity measurements to characterize the texture of an aluminum-magnesium alloy (Al 5xxx) and to compare the results with orientation imaging microscopy (OIM) results. The results are characterized in terms of three orientation distribution coefficients (ODC’s), W400, W420, and W440, each of which describes a particular forming anisotropy, and each of which has significant impact on the final products

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    Get PDF
    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale
    corecore