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We present an exact solution of a modified Dirac equation for topological insulator in the presence of a hole
or vacancy to demonstrate that vacancies can induce bound states in the band gap of topological insulators. They
arise due to the Z2 classification of time-reversal invariant insulators. Coexistence of the in-gap bound states and
the edge or surface states in topological insulators suggests that imperfections may affect transport properties of
topological insulators via additional bound states near the system boundary.
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I. INTRODUCTION

Topological insulators are narrow-band semiconductors
with band inversion generated by strong spin-orbit coupling.1

They are distinguished from the ordinary band insulators
according to the Z2 invariant classification of the band
insulators that respect time-reversal symmetry. The variation
of the Z2 invariant at their boundaries will lead to the
topologically protected edge or surface states with the gapless
Dirac energy spectrum.2–7 Imperfections, such as impurity,
vacancy, and disorder, are inevitably present in topological
insulators. Owing to the time-reversal symmetry, an exciting
feature of topological insulator is that its boundary states are
expected to be topologically protected against weak nonmag-
netic impurities or disorders.8,9 This provoked much interest
on the single impurity problem on the surface of a topological
insulator, starting with gapless Dirac model.10–14 However,
reminding that the boundary state is only a manifestation of the
topological nature of bulk bands, one should also start with the
examination of the host bulk to know how the imperfections
affect the electronic structure. It is well known that single
impurity or defect can induce bound states in many systems,
such as the Yu-Shiba state in s-wave superconductor15,16

and in d-wave superconductors.17 Topological defects were
discussed in the B-phase of 3He superfluid18 and topological
insulators and superconductors.19 Here we report that bound
states can form around a single vacancy in the bulk energy gap
of topological insulators. These bound states are found to have
the same origin as boundary states due to the Z2 classification.

The formation of the in-gap bound states can be readily
illustrated by reviewing the quantum spin Hall effect in two-
dimensional (2D) topological insulators,20–22 in which strong
spin-orbit coupling twists the bulk conduction and valence
bands, leading to a nontrivial Z2 index. As the Z2 index varies
across the edge, edge states arise in the gap with the gapless
Dirac dispersion. Unlike the quantum Hall effect in a magnetic
field, spin-orbit coupling respects the time-reversal symmetry,
so the resulting edge states appear in helical pairs, of which one
state is the time-reversal counterpart of the other, propagating
along opposite directions and with opposite spins [Fig. 1(b)].
Now imagine that the system edge is bent into a hole, the edge
states will circulate around the hole as the periodic boundary
conditions along the propagating direction remain unchanged
[Fig. 1(d)]. While shrinking the radius of the hole, most of the
edge states will be expelled into the bulk bands as the energy
separation among the states becomes larger and larger, and it

is found that at least two degenerate pairs of the states will
be trapped to form the bound states in the gap as the hole
evolves into a point defect. This mechanism of the formation
of the bound states can be realized in topological insulator in
all dimensions.

The paper is organized as follows. In Sec. II, we review
the modified Dirac model, which can be used to characterize
topological insulators. In Sec. III, we show explicitly the
existence of in-gap bound states in the presence of vacancy
in 2D topological insulators, and that the bound states can
be manipulated by a magnetic flux threading the vacancy. In
Sec. IV, the generalization to three-dimensional (3D) topo-
logical insulators is discussed with the bound-state solutions
presented. Finally, in Sec. V, we discuss the possible implica-
tions of these in-gap bound states on transport properties.

II. MODIFIED DIRAC MODEL

We will employ a modified Dirac model to provide a unified
description of topological insulators in various dimensions

H0 = vp · α + (mv2 − Bp2)β. (1)

The modification comes from the quadratic correction in
momentum −Bp2 to the band gap mv2 term. pi = −ih̄∂i is the
momentum operator (i ∈ {x,y,z}), p2 = p2

x + p2
y + p2

z , v and
m have the dimensions of the speed and mass, respectively.
B has the dimension of m−1. The Dirac matrices satisfy
the anticommutation relations αiαj = −αjαi (i �= j ), aiβ =
−βαi , and α2

i = β2 = 1. One representation of the Dirac
matrices in three spatial dimensions can be expressed as a
set of 4 × 4 matrices

αi = σx ⊗ σi, β = σz ⊗ σ0, (2)

where σi=x,y,z are the Pauli matrices, σ0 is the 2 × 2 unit
matrix, and ⊗ represents the Kronecker product. This mod-
ified Dirac Hamiltonian preserves the time-reversal symme-
try �̂H0�̂

−1 = H0 under the time-reversal operation �̂ =
−iαxαzK̂ , where K̂ is the complex conjugate operator. This
model has the identical mathematical structure as the effective
models for the quantum spin Hall effect and 3D topological
insulator.21,23–25 Following Kane and Mele for a lattice
model,2 we can study the Z2 classification of the modified
Dirac model in the continuous limit. The Z2 index can be
obtained by counting the number of pairs of complex zeros of
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FIG. 1. (Color online) Schematic description of the formation of
vacancy-induced in-gap bound states in 2D topological insulators.
(a) and (b) A pair of helical edge states traveling along the edge of
a 2D topological insulator with the gapless Dirac dispersion. (c) and
(d) When the edge is bent into a hole, the helical edge states evolve to
circulate around the hole. (e) and (f) The circulating edge states may
develop into bound states as the hole shrinks into a point or being
replaced by a vacancy. The same physics is expected to happen in
one and three dimensions.

the Pfaffian Pf[A(k)],

Pf[A(k)] = 1

2nn!

∑
P

sgn(P )
n∏

i=1

AP (2i−1)P (2i), (3)

in which P refers to all permutations of {1, . . . ,2n}, and A(k)
is a 2n-order antisymmetric matrix defined by the overlaps of
time reversal

Aij (k) = 〈ui(k)|�|uj (k)〉, (4)

with i and j running over all the bands below the Fermi surface.
After some algebra,26 the Pfaffian is found to have the form,

Pf[A(k)] = mv2 − Bp2√
(mv2 − Bp2)2 + v2p2

. (5)

Given an isotropic system, the Pfaffian Pf[A(k)] has odd pairs
of zeros only when mB > 0. Therefore, the modified Dirac
model becomes topologically nontrivial if mB > 0, and topo-
logically trivial if mB < 0. Similar property also lives in the ef-
fective model of the B-phase of 3He superfluidity.27 Due to the
bulk-boundary correspondence of topological insulator,28,29

there always exist topologically protected boundary states at
the open boundaries, where the Z2 invariant changes from
nontrivial to trivial. This feature can be well described by
the modified Dirac model when mB > 0. Starting from this
modified Dirac model, we are now ready to explore the
existence of the in-gap bound states induced by a single
vacancy by presenting an exact solution to the modified Dirac
model in the presence of vacancy boundary conditions.

FIG. 2. (Color online) Two-dimensional in-gap bound states.
(a) A 2D topological insulator with a hole of radius R at the
center. (b) and (c) Energies (E in units of the band gap �) of
in-gap bound states circulating around the hole as functions of
the hole radius. mj is the quantum number for the z-component
of the total angular momentum of the circulating bound states.
In (b), m = v = B = h̄ = 1; in (c), mv2 = −10 meV, Bh̄2 =
−686 meV nm2, and h̄v = 364.5 meV nm, adopted from Ref. 21;
in (d), mv2 = 0.126 eV, Bh̄2 = 21.8 eV Å2, h̄v = 2.94 eV Å,
adopted from Ref. 30. � = 2mv2 for 0 < mB < 1/2, and � =
(v2/|B|)√4mB − 1 for mB > 1/2.The gray areas mark the bulk
bands.

III. VACANCY IN 2D TOPOLOGICAL INSULATORS

A. Vacancy without magnetic flux

In two dimensions (pz = 0), the modified Dirac model can
be reduced into two independent 2 × 2 Hamiltonians

h± = (mv2 − Bp2)σz + h̄v(pxσx ± pyσy), (6)

with h− the time-reversal counterpart of h+.21,24,25 It is
convenient to adopt polar coordinates (x,y) = r(cos ϕ, sin ϕ)
in two dimensions. Here these equations are solved under
the vacancy boundary conditions [Fig. 2(a)], i.e., the center
of the 2D topological insulator is punched with a hole of
radius R, thus the wave function is required to vanish at
r = R and r = +∞. Due to the rotational symmetry of
h+, the z-component of the total angular momentum jz+ =
−ih̄∂θ + (h̄/2)σz provides a good quantum number, labeled
by a half-integer mj ∈ {±1/2, ± 3/2, . . .}, which can be used
to characterize the bound states. In this way, the equation is
reduced to a set of one-dimensional (1D) radial equations,
which can be solved exactly. The trial wave function has the
form (ψ1,ψ2)Te−λr . The secular equations of the undetermined
coefficients (ψ1,ψ2)T give four roots of λn (= ±λ1, ± λ2) as
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functions of E,

λ2
1,2 = v2

2B2h̄2

[
1 − 2mB ±

√
1 − 4mB + 4B2E2

v4

]
. (7)

Using the boundary conditions at r = R and r = +∞, we
finally arrive at the transcendental equation for the bound-state
energies

λ2
1 + mv2−E

Bh̄2

λ1

Kmj + 1
2
(λ1R)

Kmj − 1
2
(λ1R)

= λ2
2 + mv2−E

Bh̄2

λ2

Kmj + 1
2
(λ2R)

Kmj − 1
2
(λ2R)

,

(8)

and the wave function �+
mj

(r,θ ) for h+ turns out to have the
form ⎡

⎢⎣
K

mj − 1
2

(λ1R)

K
mj + 1

2
(λ1R)fmj − 1

2
(r)ei(mj − 1

2 )θ

i
λ2

1+ mv2−E

Bh̄2

(λ1v/Bh̄) fmj + 1
2
(r)ei(mj + 1

2 )θ

⎤
⎥⎦ , (9)

with

fmj ± 1
2
(r) =

Kmj ± 1
2
(λ1r)

Kmj ± 1
2
(λ1R)

−
Kmj ± 1

2
(λ2r)

Kmj ± 1
2
(λ2R)

, (10)

where Kn(x) is the modified Bessel function of second kind.
The solution for h− can be derived following the same
procedure, and here we use the symmetry analysis to find
the solution. The z-component of the total angular momentum
jz− = −ih̄∂θ − (h̄/2)σz commutes with h−, and we label this
good quantum number with m

′
j ∈ {±1/2, ± 3/2, . . .}. The

time-reversal pair �+
mj

(r,θ ) and �−
m

′
j

(r,θ ) must have opposite

angular momenta, i.e., m
′
j = −mj . Substituting this relation

into Eq. (8), we obtain the transcendental equation:

λ2
1 + mv2−E

Bh̄2

λ1

Km
′
j − 1

2
(λ1R)

Km
′
j + 1

2
(λ1R)

= λ2
2 + mv2−E

Bh̄2

λ2

Km
′
j − 1

2
(λ2R)

Km
′
j + 1

2
(λ2R)

.

(11)
The form of wave function �−

m
′
j

(r,θ ) can be found by acting

time-reversal operator � on �+
mj

(r,θ ).
In Figs. 2(c)–2(d), we show the bound-state energies

as functions of R for an ideal case [Fig. 2(b), mB = 1],
for the HgTe quantum well [Fig. 2(c), mB = 0.05],21 and
for a two-quintuple layer of Bi2Se3 thin film [Fig. 2(d),
mB = 0.32].30 For a macroscopically large R, we found
an approximated solution for the energy spectrum of h+ as
E = mjh̄v sgn(B)/R. As the time-reversal copy of h+, h− has
an approximated spectrum E = −mjh̄v sgn(B)/R. They form
a series of paired helical edge states, in good agreement with
the edge-state solutions in the 2D quantum spin Hall system31

if we take k = mj/R for a large R. When shrinking R, the
energy separation of these edge states �E = ±h̄v/R increases
with shrunk R, and the edge states with higher mj will be
pushed out of the energy gap gradually. However, we observe
that for mB > 0, two pairs of states with mj = ±1/2 always
stay in the energy gap, and as R → 0, their energies approach
to E = ±(v2/2|B|)√4mB − 1 for mB > 1/2 or ±mv2 for
0 < mB < 1/2 (a detailed proof is given in Appendix A).
When comparing the details of Fig. 2(c) with Fig. 2(d), we find
that the two pairs of states for mj = ±1/2 have quite different
asymptotic behaviors in the spectrum when R decreases to

zero. This finding agrees with the analytical result obtained
by taking small R expansion of the transcendental equation
[Eq. (8)] for 0 < mB < 1/2 (the proof is demonstrated in
Appendix A),

E ≈ mv2

[
1 − χ2

2
exp(χC)(�1R)χ

]
,

(12)

with χ = (1 − 2mB)/mB, �1 = v
|B|h̄

√
1 − 2mB, and C =

− ln 2 + γ . γ is Euler’s constant. The equation shows that for
smaller mB, the E–R relation for mj = ±1/2 tends to become
flat before entering the bulk. This can be explained by noting
the fact that there is no in-gap bound state when mB < 0,
suggesting mB = 0 is the phase transition point. The bound
state with smaller mB is closer to the transition point, and thus
tends to enter the bulk more easily, which results in the quite
flat E–R relation.

The solutions verify the formation of the in-gap bound
states as shown in Fig. 1. Therefore, considering the symmetry
between h+ and h−, we conclude that there always exist at least
two pairs of bound states in the energy gap in the 2D quantum
spin Hall system in the presence of vacancy.

B. Vacancy with magnetic flux

When a magnetic flux is applied through the hole, the energy
levels of the bound states can be continuously manipulated.
To consider a � flux that threads through the hole, we
perform the Peierls substitution p → p + eA in h+ by taking
the gauge A = (�/2πr)eθ , which still keeps mj a good
quantum number. Therefore, the eigenfunctions of this new
Hamiltonian can be readily expressed as exp(−iνθ )�+

mj
(r,θ )

after a gauge transformation, with ν = �/�0 and the flux
quantum �0 = h/e. In this case, the allowed value for mj is
no longer half-integer, but changed to mj = m+ + ν, with the
expectation value of jz+ being m+h̄ ∈ {±1/2, ± 3/2, . . .}h̄.
This is because that applying magnetic flux is equivalent to
changing the boundary conditions. We have mentioned in the
previous section that the approximated solution at large R

for h+ is E ∝ mj/R. When half-quantum flux ν = 1/2 is
introduced, mj can be 0. This provides the possibility for the
existence of zero-energy bound state. Similar analysis can be
applied to h− and one get m

′
j = m− + ν, with the expectation

value of jz− being m−h̄ ∈ {±1/2, ± 3/2, . . .}h̄. Half-quantum
flux can also trap zero-energy bound state when we substitute
the possible m

′
j into Eq. (11), making the zero mode doubly

degenerate. Numerical result for a 70 nm thick HgTe quantum
well21 is shown in Fig. 3. The existence of zero mode can
be seen explicitly in Figs. 3(a) and 3(b) when half-quantum
flux is introduced. In Fig. 3(a), the spectrum of h+ with index
mj and h− with index −mj overlaps, representing that the
time-reversal symmetry is preserved. However, for arbitrary
magnetic flux in Fig. 3(b), bound-state energies from block
h+ (black lines) and h− (light orange lines) split off, as
the time-reversal symmetry is broken by the magnetic flux.
Compared with the bulk-state spectrum under magnetic flux,32

we can see that the in-gap bound states from h+ and h−
blocks move in opposite directions. The slopes of both series of
curves are almost linear, supporting our approximated results
that bound-state energy E ∝ mj/R or E ∝ −m

′
j /R for large
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FIG. 3. (Color online) Effect of magnetic flux on in-gap bound
states. Energies (E in units of the band gap �) of in-gap bound states
circulating around the hole as functions of (a) the hole radius R when
half-quantum flux ν = 1/2 is applied and (b) the magnetic flux ν

(in unit of flux quantum �0 = h/e) for fixed radius R = 50 nm. m+
(m−) is the quantum number for the z-component of the total angular
momentum jz+ (jz−) of the circulating bound states. mj = m+ + ν.
In (b), black (light orange) lines belong to h+ (h−) block. In (a) and
(b), mv2 = −10 meV, Bh̄2 = −686 meV nm2, and h̄v = 364.5 meV
nm, adopted from Ref. 21. � = 2mv2. The gray areas mark the bulk
bands.

radius R. The existence of zero mode when half-quantum flux
appears may not be surprising since it is well known that a
vortex in a spinless p-wave superconductor can trap majorana
zero mode33 and we notice that the topological insulator
shares a large similarity in the low-energy effective theory
with px + ipy superconductor.26 Some differences remain in
the base space and symmetry. The space for superconductor
is the Nambu space, whose redundancy makes the excitation
of majorana fermions. However, in topological insulators the
quasiparticles are Dirac fermions. In addition, spinless p-
wave superconductor violates time-reversal symmetry, while
topological insulator does not for half-quantum flux.

IV. VACANCY IN 3D TOPOLOGICAL INSULATORS

For 3D topological insulators,23,34 the mechanism of the
formation of the in-gap bound states is applicable. In 3D, the
modified Dirac equation with a central potential becomes a
classical problem, the hydrogen atom-like problem. For the
Coulomb potential, it was exactly solved to give the fine
structure of light spectra of hydrogen atom. Similarly, the
eigenstates of the 3D modified Dirac equation with a central
potential can be labeled by three good quantum numbers. The
first two are the total angular momentum Ĵ = r̂ × p̂ + h̄

2 �̂ and
its z-component Ĵz, where the spin operator �̂α = σ0 ⊗ σα

(α = x,y,z). The eigenvalues of Ĵ2 and Ĵz are j (j + 1)h̄2 and
mjh̄, respectively, with j ∈ { 1

2 , 3
2 , . . .} and mj ∈ {−j, . . . ,j}.

The third conserved quantity is the spin-orbit operator κ̂ =
β(r̂ × p̂ · �̂ + h̄). Note that κ̂2 = Ĵ2 + h̄2/4, then the eigenval-
ues of κ̂ is h̄κ = ±h̄(j + 1/2) = ±h̄, ±2h̄, . . .. Thus, κ here is
similar to the ± index that block diagonalize the Hamiltonian
into h± in the 2D case. These conserved quantities also help

to reduce the problem into a set of 1D radial equations.35

In the presence of the vacancy or a cavity of radius R with
the boundary conditions at �(R) = �(∞) = 0, the radial part
of the wave function can be solved in terms of the modified
spherical Bessel function of the second kind kn(x). With the
help of the recursive relation of kn(x), the transcendental
equations for the bound state energies can be found as

λ2
1 + mv2−E

Bh̄2

λ1

kj± 1
2
(λ1R)

kj∓ 1
2
(λ1R)

= λ2
2 + mv2−E

Bh̄2

λ2

kj± 1
2
(λ2R)

kj∓ 1
2
(λ2R)

, (13)

for κ = j + 1
2 and −(j + 1

2 ), respectively. The corresponding
wave function �

mj

j,κ (r,θ,φ) are of the form:

�
mj

j,κ (r,θ,φ) ∝

⎡
⎢⎣

i(λ1v/Bh̄)

λ2
1+ mv2−E

Bh̄2

gj∓ 1
2
(r)φA/B

j,mj

k
j± 1

2
(λ1R)

k
j∓ 1

2
(λ1R)gj± 1

2
(r)φB/A

j,mj

⎤
⎥⎦ , (14)

where

gj± 1
2
(r) =

kj± 1
2
(λ1r)

kj± 1
2
(λ1R)

−
kj± 1

2
(λ2r)

kj± 1
2
(λ2R)

, (15)

φA
j,mj

(θ,ϕ) =
⎡
⎣

√
j+mj

2j
Y

mj − 1
2

j− 1
2

(θ,ϕ)√
j−mj

2j
Y

mj + 1
2

j− 1
2

(θ,ϕ)

⎤
⎦ , (16)

φB
j,mj

(θ,φ) =
⎡
⎣−

√
j−mj +1
2(j+1) Y

mj − 1
2

j+ 1
2

(θ,ϕ)√
j+mj +1
2(j+1) Y

mj + 1
2

j+ 1
2

(θ,ϕ)

⎤
⎦ , (17)

and Ym
j (θ,ϕ) is the spherical harmonics. φA

j,mj
and φB

j,mj

possess opposite parities.
Although the rotational symmetry simplifies the problem, it

is believed that the presence of the bound states is not sensitive
to the shape of the vacancy, because of their topological origin.
As an example, we choose a set of isotropic parameters based
on first-principle calculations for Bi2Se3, with mv2 = 0.28 eV,
h̄v = 3.2 eV Å, and B = 33 eV Å2. In this case, mB ∼ 1 >

1/2. Similar to the 2D case, we find that the surface states
around the cavity exist for a large radius R as expected by the
bulk-boundary correspondence for a Z2-invariant topological
insulators.29 The states with larger orbital angular momentum
are eventually expelled into the bulk band while the radius
is shrinking. We plot several bound-state energies of small
orbital angular momenta as a function of the radius R in Fig. 4.
For convenience, the bound states are labeled by the quantum
number κ for the spin-orbit operator. Each κ corresponds to
(2j + 1)-fold degenerate states of different mj . Note that when
the vacancy radius is only several angstroms, two degenerate
pairs of bound-state energies can survive. Detailed analysis of
the solution indicates that the spatial distribution of a bound
state is comparable with that of the edge or surface states (for a
large R in the present case), which is determined by the model
parameters and slightly depends on R. From the evolution of
the edge or surface states into the in-gap bound states, we think
their formation has the same topological origin.
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FIG. 4. (Color online) Three-dimensional in-gap bound states.
Energies (E in units of the band gap �) of in-gap bound states
surrounding a vacancy in a 3D topological insulator as functions of the
vacancy radius R. κ is the quantum number of the spin-orbit operator.
Parameters: mv2 = 0.28 eV, h̄v = 3.2 eV Å, and Bh̄2 = 33 eV Å2.
� = (v2/|B|)√4mB − 1. The gray areas mark the bulk bands.

V. DISCUSSION

The model in Eq. (1) can be also applied to the B-phase
of 3He superfluidity, which is known to be topologically
nontrivial, if one changes the notation mv2 to p2

F /2m3, where
m3 is the mass of 3He quasiparticle and pF is the Fermi
momentum. In liquids, there are no long-lasting vacancies,
instead the defects in 3He–B were modeled in forms of hard
sphere, which cannot lead to zero electron wave function
around the defect because of the Klein paradox of Dirac
fermions. In other words, the hard sphere cannot approach
the Dirichlet boundary conditions in this paper. Nevertheless,
the bound states around impurities in 3He–B are known for
a long time. In the Dirac equation, the hard-sphere potential
could generate a series of the bound states, which looks more
like those of a hydrogen atom,36 and may disappear under
the continuous deformation of the potential. In this sense, the
impurity problem of 3He–B is distinct from this work.

Now we turn to possible implications of these solutions to
topological insulators. Due to the overlapping in energy, when
the vacancies are located close to the boundary, the induced
in-gap bound states may sabotage the electronic transport
through the boundary states. For a single hole or vacancy
near the edge of the sample, when the in-gap bound state and
the edge or surface states overlap in space, the distortion of
their wave functions will cause change in their energies as
well. As a result, we may also regard that there exist transition
amplitudes between these states, and the helical edge states
will be scattered by the in-gap bound states. If there is no other
bound states in the bulk, the electrons in the edge states will
not be further scattered away from the edge as what happens
in the quantum Hall effect.37 The situation will change if
the concentration of the holes or vacancies is dense enough.
In this case, the in-gap bound states will form an “impurity
band” as in semiconductors and superconductors.16,17 When
the spatial size of the bound state is comparable with the
average distance of the holes or vacancies, it becomes possible
that the electrons are scattered from one edge of system to the
other via the multiple scatterings by the in-gap bound states.
In the HgTe/CdTe quantum wells,22 a typical scale of the edge

states and bound states is about 50–100 nm.31 Thus, when
the hole concentration is about 1010/cm2, the in-gap bound
states will destroy the quantum spin Hall effect. This may help
to understand why the nonzero conductance is narrowed to a
small region of gate voltage in the HgTe/CdTe quantum wells.

However, blessings usually come in disguise. The whole
semiconductor business depends on how the positive and
negative effects of impurities and vacancies are precisely
balanced. The in-gap bound states for sure are essentially
different from those we know before, as they are subjected
to some topological nature and confined to a mesoscopic
scale. Their possible impact and applications for topological
insulators in future deserve further studies to explore.
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APPENDIX A: ASYMPTOTIC BEHAVIOR FOR SMALL
RADIUS R

1. Leading-order expansion term

We only focus on mj = 1/2, and the transcendental
equation (8) becomes

λ2
1 + mv2−E

Bh̄2

λ1

K1(λ1R)

K0(λ1R)
= λ2

2 + mv2−E

Bh̄2

λ2

K1(λ2R)

K0(λ2R)
. (A1)

By taking small R approximation and keeping only the leading
term of R, we have

λ2
(
λ2

1 + mv2−E

Bh̄2

)
λ1

(
λ2

2 + mv2−E

Bh̄2

) � 1, (A2)

which gives E = mv2 or E = (v2/2B)
√

4mB − 1. Com-
bining with the analysis in Appendix B, it is clear that
for mj = 1/2 branch, the bound state energy approaches
to E = (v2/2B)

√
4mB − 1 for mB > 1/2 or E = mv2 for

0 < mB < 1/2. The result for mj = −1/2 branch can be
obtained by reversing the sign of energy for the symmetry
of the spectrum.

2. Higher-order expansion term

When higher-order expansion terms of R are kept, Eq. (A1)
reduces to

λ2
1 + mv2−E

Bh̄2

λ2
1

1

ln(λ1R) + C
= λ2

2 + mv2−E

Bh̄2

λ2
2

1

ln(λ2R) + C
,

(A3)

where C = − ln 2 + γ and γ is Euler’s constant. Here we
assume that m > 0 and only focus on mj = 1/2. (The result
for m < 0 can be obtained by reversing the sign of energy
and is the same for mj = −1/2.) When 0 < mB < 1/2, we
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TABLE I. Possible cases of λ1,2 in different ranges of energy E for parameters mB.

mB ∈ (−∞,0) mB ∈ (0,1/4) mB ∈ (1/4,1/2) mB ∈ (1/2, + ∞)

|E| ∈ [0, v2

2|B|
√

4mB − 1) λ1 > 0, λ2 > 0 λ1 > 0, λ2 > 0 λ1,2 = a ± ib λ1,2 = a ± ib

|E| ∈ ( v2

2|B|
√

4mB − 1,|m|v2) λ1 > 0, λ2 > 0 λ1 > 0, λ2 > 0 λ1 > 0, λ2 > 0 λ1 = iη1, λ2 = iη2

|E| ∈ (|m|v2,∞) λ1 > 0, λ2 = iη λ1 > 0, λ2 = iη λ1 > 0, λ2 = iη λ1 > 0, λ2 = iη

substitute E = mv2 − δE into Eq. (A3) with δE/mv2 � 1,
and obtain an expression by neglecting terms comparable or
higher-order smaller than δE ln(δE),

ln(�1R) � mB

1 − 2mB
ln(δE) + 2mB

1 − 2mB
ln

√
2mB

(1 −2mB)v
− C,

(A4)

with �1 = v
|B|h̄

√
1 − 2mB. Let χ = (1 − 2mB)/mB,

Eq. (A4) reproduces Eq. (12).

APPENDIX B: DISCUSSION ON λ

From the definition of λ1,2 in Eq. (7), we conclude all pos-
sible values of λ1,2 for different parameters mB and different
energy ranges in Table I. In this table, a, b, and η are positive.
Considering that the density of wave distribution for bound
states must vanish in infinite radius R, we can have bound
states only if both λ1 and λ2 have real part. Thus, whatever
boundary condition is given, the only possible energy range
for the existence of bound states is E ∈ (−|m|v2,|m|v2) for
mB ∈ (−∞,1/2) or E ∈ (− v2

2|B|
√

4mB − 1, v2

2|B|
√

4mB − 1)
for mB ∈ (1/2, + ∞).
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