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Abstract. In-gap bound states induced by non-magnetic impurities in various
dimensional topological insulators are investigated based on a modified Dirac
model that considers quadratic corrections to the mass term. Their existence
and features greatly rely on the potential form of the impurity as well as the
dimensionality of the topological insulator. It is analytically proven that the
impurity potential modeled by the delta function can induce the bound states
in one dimension (1D), but not in two and three. For a single non-magnetic
impurity with a general isotropic potential, formal solutions are obtained and
further numerical calculations are performed. In particular, the in-gap bound
states induced by a non-magnetic impurity with isotropic Gaussian potentials
in two-dimensional (2D) and three-dimensional (3D) topological insulators are
numerically investigated. Information on how many in-gap bound states can be
trapped by a non-magnetic Gaussian impurity is presented for the parameters
from a series of topologically non-trivial materials.
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1. Introduction

Topological insulators (TIs) have attracted much attention over the last few years due to
their distinctive band structures and fantastic physical properties [1–4]. They are narrow-
band insulators with topologically protected edge or surface states originating from the
strong spin–orbit coupling [5–18]. In a real TI sample, imperfections, such as dislocation,
vacancy or impurity, are inevitably present. It was found numerically that the Anderson
disorders [19], which randomize on-site energies, can induce topologically protected edge states
in the two-dimensional (2D) HgTe/CdTe quantum well (QW) that are initially topologically
trivial [20, 21], leading to the topological Anderson insulator (TAI) in two dimensions (2D) [20].
Later, the discussion on TAI was generalized to 3D [22, 23].

Besides these efforts on the random Anderson disorders, the influence of ordered or even
single imperfection have also attracted growing attention in the community [24]. It was shown
that in three-dimensional (3D) TI Bi0.9Sb0.1 [25], dislocation lines (1D imperfections) are
associated with 1D fermionic excitations, which are topologically protected and not scattered
by disorder. In addition, it is already known that in many systems bound states can be induced
by impurities, which are zero-dimensional (0D) imperfections. A series of works have been
done on the issue of a single impurity on the surface of a 3D TI starting with the gapless Dirac
model [26–30]. However, since the boundary states are only a manifestation of the topological
nature of bulk bands, one must examine the host bulk to know how these imperfections affect
the system. In our recent work [31], we explicitly presented the existence of the in-gap bound
states trapped by a single vacancy in 2D and 3D TIs based on a modified Dirac Hamiltonian
that describes the TI bulk very well [32]. Their possible influence on the transport features of
TI was also discussed. The existence of in-gap bound states in that work is due to the vacancy
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boundary condition (BC), which demands that the electron wavefunction must vanish in the
vacancy region.

In contrast to vacancies, impurities manifest themselves as additional potential terms to
the Hamiltonian of the system. Although the electron wavefunction can tunnel the impurity
potential and does not have to entirely vanish where the impurity locates, the electronic transport
may be more or less impeded. On the other hand, in modern semiconductor techniques,
intentional doping is an efficient way of improving the performance of materials by modulating
their electrical properties. Therefore for TI samples, whether to understand the existing data
on their electronic and transport features or to find appropriate dopants for performance
improvement, it is worth performing a systematic investigation on the issue of whether and how
a single impurity can induce in-gap bound states. In the simplest case, the impurity is assumed
to be non-magnetic, which does not break time-reversal symmetry (TRS). Furthermore, the
impurity potential can be assumed to be isotropic, which is not far away from reality but greatly
simplifies our discussions. In this work, based on the modified Dirac model [32], we report that,
depending on the impurity potential form as well as the dimensionality of the TIs, bound states
could be induced around non-magnetic impurities with their energies lying in the bulk energy
gap.

This paper is organized as follows. In section 2, we briefly review the modified Dirac
model. In section 3, formal solutions of the modified Dirac model in various dimensions are
presented when a single non-magnetic impurity with the general potential form appears. In
particular, some analytical results are obtained when the impurity potential takes a δ-function
form. In section 4, in-gap bound states trapped by a single non-magnetic impurity with isotropic
Gaussian potentials in 2D films and 3D bulk TIs are numerically investigated. In section 5, the
possible detection of these in-gap bound states by using a scanning tunneling microscope (STM)
is discussed. Finally, a summary is given in section 6.

2. Modeling

Following our previous work [31, 32], a modified Dirac model is employed to describe the TIs
in various dimensions in a unified way,

H0 = vp · α +
(
mv2

− Bp2
)
β, (1)

where −Bp2
= −B(p2

x + p2
y + p2

z ) is the quadratic correction to the topological mass mv2, and
pi = −ih̄∂i , i ∈ {x, y, z}, is the momentum operator. v, m and B have the dimensions of speed,
mass and reciprocal mass, respectively. The Dirac matrices satisfy the anticommutation relations
αiα j = −α jαi (i 6= j), aiβ = −βαi and α2

i = β2
= 1. A general 3D representation of them can

be expressed as

αi = σx ⊗ σi , β = σz ⊗ σ0, (2)

where σi=x,y,z are the Pauli matrices, σ0 is the 2 × 2 unit matrix and ⊗ represents the Kronecker
product. The Hamiltonian (1) preserves TRS: T H0T −1

= H0, where T = −iαxαz K̂ is the time
reversal operator and K̂ is the complex conjugate operator.

The modified Dirac Hamiltonian (1) shares the same mathematical structure as those for
2D and 3D TIs [7, 18]. The topological nature carried by it can be analyzed following the Z2

classification of Kane and Mele [5]. The main results can be found in our previous work [31, 32].
In a word, the modified Dirac Hamiltonian becomes topologically nontrivial (the Z2 index is
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equal to 1) if m B > 0 and topologically trivial (the Z2 index is equal to 0) if m B < 0. A similar
conclusion is also drawn by Volovik in [33]. Due to the bulk-boundary correspondence, there
always exist topologically protected boundary states at the open boundaries of a TI, where
the Z2 invariants change from nontrivial to trivial [34, 35]. This feature can be well described
by Hamiltonian (1) with open BCs (OBCs) when m B > 0. For the vacancy BCs, such as 2D
circular holes and 3D spherical vacancies [31], the corresponding solutions are called ‘bound
states’ since they are spatially confined around the vacancies. These bound states have the same
origin as those due to the Z2 classification.

3. In-gap bound state solutions in the presence of a single isotropic
non-magnetic impurity

In this work, we focus on the effects of non-magnetic impurities. In the presence of a non-
magnetic impurity, a potential term V (r)σ0 ⊗ σ0 is added to Hamiltonian (1). As the impurity
potential is assumed to be isotropic, one has V (r)≡ V (r). In this section, we present the formal
solutions of the modified Dirac model in the presence of V (r).

3.1. Integral equation for bound state energies

Before directly solving the model, the bound state energies can be formally obtained through an
integral equation. Although in most cases this integral equation cannot be solved analytically,
it does provide rich information about the existence of bound states under certain impurity
potentials in various dimensions.

3.1.1. General formalism. The modified Dirac equation with a general potential V (r) can be
written as

[E − H0(r)]9(r)= V (r)9(r). (3)

The wavefunction 9(r) can be expanded by its Fourier transformation components as 9(r)=∑
p′ up′eip′

·r/h̄ . Thus one has

[E − H0(p)]up =

∑
p′

Vpp′up′, (4)

where Vpp′ =
∫

drV (r) e−i(p−p′)·r/h̄ . Once the potential is given, Vpp′ can be calculated. After
putting it back to equation (4), in principle the eigenenergies and eigenwavefunctions can be
solved. However, except for several special cases, for a general potential V (r), equation (4) is
hard to solve analytically.

3.1.2. δ-potential. For a delta potential V (r)= V0δ(r), Vpp′ ≡ V0, then one has

up = [E − H0(p)]−1V0

∑
p′

up′ . (5)

A non-trivial solution to the four-component spinor ‘
∑

p′ up′’ requires

det

[∑
p

V0

E − H0(p)
− 1

]
= 0,
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or

det

[∫
ddp

(2π h̄)d
V0

E − H0(p)
− 1

]
= 0, (6)

where d is the dimensionality.
For the 1D case, the modified Dirac Hamiltonian can be easily inverted. After some algebra

we have ∫ +∞

0

dkx

π

[E A/B ± (mv2
− Bh̄2k2

x)]V0

E2
A/B − (mv2 − Bh̄2k2

x)
2 − v2h̄2k2

x

= 1, (7)

where E A and EB denote the energy solutions for ‘+’ and ‘−’, respectively.
For the 2D case, one can obtain a similar integration equation for the 2D bound state

energies, ∫ +∞

0

kdk

2π

[E A/B ± (mv2
− Bh̄2k2)]V0

E2
A/B − (mv2 − Bh̄2k2)2 − v2h̄2k2

= 1, (8)

where k2
= k2

x + k2
y . However, the integral in equation (8) will logarithmically diverge when

|k| → +∞. This means that in 2D, an impurity with δ-potential cannot trap any bound states.
Similarly, in 3D, although the integration equation is more complicated, divergence also exists in
the k-integration, which excludes the possibility of 3D bound states under δ-potential. However,
this will not always be the real case because of two facts. Firstly, in real materials with lattice
structure, the momentum k cannot be infinitely large but confined within the first Brillouin zone.
Thus, the integral in the 2D and 3D cases will not diverge and finite solutions of bound state
energy are possible. Secondly, the potential form of a real impurity should be distinct from the
ideal δ-function. Thus the disaster of integral-divergence in 2D and 3D could be avoided.

3.2. 1D

Now we begin to solve the modified Dirac Hamiltonian directly. By changing the basis
order from {90

1,2,3,4} to {90
1,4,2,3}, the 1D (py = pz = 0) modified Dirac Hamiltonian can be

decomposed into two identical blocks,

h = (mv2
− Bp2

x)σz + vpxσx . (9)

Following the procedure in our previous works [31, 32, 36–38], its ‘end states’ solution (with
zero energy) can be easily obtained:

9(±)=
C
√

2

(
±sgn(B)

i

)
(e∓x/ξ1 − e∓x/ξ2), (10)

with ξ−1
1,2 =

|v|

2|B|h̄ (1 ±
√

1 − 4m B) and C =
√

2(ξ1 + ξ2)/|ξ1 − ξ2|. ‘±’ indicates that the semi-
infinite chain lies in the region x ≷ 0 [32].

When an impurity with δ-potential V (x)= V0δ(x) appears in an infinite 1D TI, the
decoupled 1D modified Dirac equation reads[

vpxσx +
(
mv2

− Bp2
x

)
σz + V0δ(x)

]
9(x)= E9(x), (11)

where 9(x) is a two-component spinor. The continuity of the wavefunction at x = 0 requires
that9(ε)=9(−ε), where ε is infinitely small. In addition, the integral of equation (11) around
x = 0 gives

Bh̄2σz [∂x9(ε)− ∂x9(−ε)] + V09(0)= 0. (12)
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Also, the electron wavefunction should vanish when x → ±∞. All these conditions lead to two
transcendental equations for bound state energy:√

1 − 2m B + 2|m B|

√
1 −

E2

m2v4
=

V0

2h̄v

[
±mv2

− E
√

m2v4 − E2
∓ sgn(B)

]
, (13)

where up to two solutions can be found, which are just the E A/B defined in equation (7). Besides,
symmetric properties between E A and EB can be observed from the transcendental equation as
E A(V0)= −EB(−V0) and E A,B(m, B, V0)= −E A,B(−m,−B,−V0). Depending on the value
of the dimensionless parameter m B, we have several types of solutions for E A and EB for
different values of the impurity strength V0, which are summarized in figures 1(c)–(f). From the
solutions of the equation, we conclude that for any value of V0 there always exists at least one
pair of bound states in 1D TIs, that is, m B > 0. In this case, two pairs of bound states always
locate in the gap if m B > 1/2, while one pair moves out of the gap for a small value of V0 if
0< m B < 1/2.

The formation of these in-gap bound states can be understood as follows. Suppose we have
an infinite 1D TI, in which the energy gap separates the positive and negative spectra. If we
cut the chain at some point, saying x = 0, then we produce two open boundaries on the two
sides of x > 0 and x < 0. As the Z2 index changes at each open boundary from the inside of the
TI to the vacuum outside, there must exist a pair of states (end states) at each open boundary
with the same energy, as shown in equation (10). This double degeneracy comes from TRS.
The energies of these states lie inside the bulk gap and are equal to zero for the present model
with particle–hole symmetry (PHS). Now we paste the two ends again with some kind of ‘glue
potential’; it is possible that these end states can be trapped or mixed around the connecting
point and evolve into in-gap bound states. This process is sketched in figures 1(a) and (b). The
shapes of the possibility density of the wavefunction of our solutions for a δ-potential support
this intuitive picture for the formation of the in-gap bound states. An impurity located at x = 0,
unlike the open boundary, allows tunneling between the two ends of the chain, and will affect
the behavior of the wavefunction near the point of x = 0. For the 1D δ-potential in a 1D TI,
as proved in section 3.1.2, the bound states induced by it are always there regardless of its
strength. For comparison, a pair of bound states induced by δ-potential for m B < 0 is also
possible when 0< |V0|< 2h̄|v|

√
1 − 2m B, but vanishes after |V0| exceeds 2h̄|v|

√
1 − 2m B,

indicating a different origin from that for m B > 0.

3.3. 2D

Similar to the 1D case, by changing the basis order from {90
1,2,3,4} to {90

1,4,2,3}, the modified
Dirac model in 2D (pz = 0) can be reduced to two uncoupled blocks,

h± = (mv2
− Bp2)σz + v(pxσx ± pyσy)+ V (r)σ0, (14)

where h− is the time-reversal partner of h+. Here, we adopt polar coordinates (x= rcosθ ,
y= rsinθ ) to solve the equation. Since the impurity potential is isotropic, the z-component
of the angular momentum ĵz = −ih̄∂θ ± (h̄/2)σz still commutes with h±, as in the circular
vacancy case [31]. Thus the eigenstates here can also be labeled by its quantum numbers
m j ∈ {±1/2,±3/2, . . .}. The trial solutions of the eigenstates have the following forms:

∝

[
f1(r)ei(m j −

1
2 )θ

f2(r)ei(m j + 1
2 )θ

]
and ∝

[
f ′

1(r)e
i(m′

j +
1
2 )θ

f ′

2(r)e
i(m′

j −
1
2 )θ

]
(15)
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Figure 1. In-gap bound states in 1D TIs. (a) The presence of end states with zero
energy at the open boundaries of a broken 1D TI. (b) The zero-energy end states
evolve into in-gap bound states when the two open boundaries are connected by
an impurity. (c, d) Bound state energies E A (red) and EB (green) as functions
of the impurity strength V0 for different m B values. (e, f). Wavefunctions at
specified (E, V0) marked by circles in (c) and (d). The in-gap energy zone
is |E |< v2

2|B|

√
4m B − 1 for m B > 1/2 and |E |< |m|v2 for m B < 1/2. For

m B > 1/2, there are always two pairs of bound states in the gap regardless
of the strength of V0; for 0< m B < 1/2, when |V0|> 2h̄|v|

√
1 − 2m B, there

are two pairs of in-gap bound states, while only one pair survives when |V0|<

2h̄|v|
√

1 − 2m B. Parameters: m = 1 = h̄ = v = 1. B = 1 for (c) and (e); B = 0.2
for (d) and (f).
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for h+ and h− blocks, respectively. By putting them into the Dirac equations h±9± = E9±, the
problem is simplified to two sets of equations for the radial part,∂2

r + ∂r
r +χ2

+ −
(m j −

1
2 )

2

r2 , −iv
Bh̄ (∂r + m j + 1

2
r )

iv
Bh̄ (∂r −

m j −
1
2

r ), ∂2
r + ∂r

r +χ2
−

−
(m j + 1

2 )
2

r2

 [
f1

f2

]
= 0,

(16)∂2
r + ∂r

r +χ2
+ −

(m′

j +
1
2 )

2

r2 , −iv
Bh̄ (∂r −

m′

j −
1
2

r )

iv
Bh̄ (∂r +

m′

j +
1
2

r ), ∂2
r + ∂r

r +χ2
−

−
(m′

j −
1
2 )

2

r2

 [
f ′

1

f ′

2

]
= 0,

where

χ2
±

=
mv2

∓ E ± V (r)

Bh̄2 . (17)

From these equations, it is clear that due to the appearance of the finite impurity potential,
PHS is destroyed while TRS survives since the impurity is non-magnetic. Suppose that there
is a solution of h+ block with eigenenergy E , angular momentum m j h̄ and radial solution
[ f1(r), f2(r)]T. We denote this eigenstate as 9+,E,m j , where ‘+’ indicates that it comes from
h+ block. It is easy to check that the state 9−,E,−m j with eigenenergy E , angular momentum
−m j h̄ and radial solution [ f1(r),− f2(r)]† is an eigenstate of h− block and also the time-
reversal counterpart of 9+,E,m j . Thus, in the original basis order {90

1,2,3,4}, the whole 4 × 1
eigenwavefunction with eigenenergy E has the general form

∝


C+ f1(r)ei(m j −

1
2 )θ

C− f ∗

1 (r)e
−i(m j −

1
2 )θ

−C− f ∗

2 (r)e
−i(m j + 1

2 )θ

C+ f2(r)ei(m j + 1
2 )θ

 (18)

up to a normalization factor, where C± are superposition parameters.
Based on this general solution, one can calculate the charge current density jc,

Ej θ(±)∝ ±|C±|
2

[(
m j −

1

2

)
| f1(r)|2

r
+

(
m j +

1

2

)
| f2(r)|2

r

]
, Ej r(±)= 0, (19)

where ± denotes the h± blocks, respectively. In fact in 2D, the modified Dirac model (1) is the
same with the model first introduced by Bernevig, Hughes and Zhang (BHZ) [7] for HgTe/CdTe
QWs, as long as we adopt the following basis correspondence: {E+, H+, E−, H−} ↔

{90
1 , 9

0
4 , 9

0
2 ,−9

0
3 }. The ‘+(−)’ block in equation (14) then describes the spin-up (-down)

subspace. In this sense, equation (19) shows that the components of the total eigenwavefunction
that belong to h± blocks form a pair of states with opposite helicities.

3.4. 3D

In 3D, the modified Dirac model cannot be decoupled into two blocks because of the vpzαz

term. However, due to the isotropy of the impurity potential, the eigenstates of the whole
4 × 4 Hamiltonian (including V (r)σ0 ⊗ σ0) can still be labeled by the quantum number of
three conserved quantities, just like the spherical vacancy case [31]. The first two are the
total angular momentum Ĵ = r̂ × p̂ + h̄

2 6̂ and its z-component Ĵ z, with the spin operator
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6̂ = σ0 ⊗ (σx , σy, σz). The eigenvalues of Ĵ2 and Ĵ z are j ( j + 1)h̄2 and m j h̄, respectively,
with j ∈ {

1
2 ,

3
2 , . . .} and m j ∈ {− j, . . . , j}. The third is the spin–orbit operator κ̂ = β(r̂ × p̂ ·

6̂ + h̄), with κ̂2
= Ĵ2 + h̄2/4. Thus the eigenvalues of κ̂ are κ h̄ = ±( j + 1/2)h̄ = ±h̄,±2h̄, . . ..

In spherical coordinates (x, y, z)= r(sin θ cosφ, sin θ sinφ, cosφ), the eigenfunctions for
(Ĵ2, Ĵ z) have the form

φA
j,m j
(θ, φ)=


√

j+m j

2 j Y
m j −

1
2

j− 1
2
(θ, φ)√

j−m j

2 j Y
m j + 1

2

j− 1
2
(θ, φ)

 ,

φB
j,m j
(θ, φ)=

−

√
j−m j +1
2( j+1) Y

m j −
1
2

j+ 1
2
(θ, φ)√

j+m j +1
2( j+1) Y

m j + 1
2

j+ 1
2
(θ, φ)

 ,
where Y m

j is the spherical harmonics. The general solutions have the forms

∝

φA
j,m j
(θ, φ)g1(r)

φB
j,m j
(θ, φ)g2(r)

 and ∝

φB
j,m j
(θ, φ)g′

1(r)

φA
j,m j
(θ, φ)g′

2(r)

 (20)

for κ = j + 1/2 and −( j + 1/2), respectively. The radial parts of the wavefunction are
determined by the following equations: ∂2

∂r2 + 2
r
∂

∂r +χ2
+ −

κ(κ−1)
r2 , iv

Bh̄ (
∂

∂r + κ+1
r )

v

iBh̄ (
∂

∂r −
κ−1

r ),
∂2

∂r2 + 2
r
∂

∂r +χ 2
−

−
κ(κ+1)

r2

9κ(r)= 0, (21)

where χ 2
±

are the same as in equation (17). 9κ(r) denotes [g1(r), g2(r)]T for κ = j + 1/2 or
[g′

1(r), g′

2(r)]
T for κ = −( j + 1/2).

Note that m j does not appear in the eigenvalue equation; thus there is a 2|κ|-degeneracy
for the corresponding eigenenergy E . Similar to the 2D case, among the eigenstates of the 3D
modified Dirac model, PHS fails, while TRS survives. TRS resides in the m j ↔ −m j pair in the
2|κ| degenerate states with energy E . Suppose that there exists a solution with eigenenergy E ,
angular momentum quantum number ( j,m j), spin–orbit quantum number κ and eigenvector
[φA

j,m j
g1(r), φB

j,m j
g2(r)]T. We denote this eigenstate as 9E, j,κ,m j . Apparently, the state with

angular momentum quantum number ( j,−m j), spin–orbit quantum number κ and eigenvector
[(σxφ

A
j,m j
)g1(r), (−σxφ

B
j,m j
)g2(r)]† is the time-reversal counterpart. This state can be denoted as

9E, j,κ,−m j .
From the above discussions, formal solutions of 2D and 3D in-gap bound states are

obtained. However, there are no further analytical results under a general isotropic potential
V (r). Numerical calculations are then needed to investigate the existence and behavior of in-
gap bound states under selected potential forms and material parameters.

4. In-gap bound states in 2D and 3D TIs induced by a single non-magnetic
Gaussian impurity

As illustrated in section 3.1.2, for the δ-potential, the integral equation in 2D and 3D will
diverge, so the δ-potential is not strong enough to form bound states in 2D and 3D TIs.
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Therefore the δ-potential is different from the vacancy or defects as discussed in our previous
work, which always induce the in-gap bound states in the topological nontrivial regime [31].
In this section, based on the formal solutions obtained in sections 3.3 and 3.4, we use isotropic
Gaussian potentials to mimic the influence of a real non-magnetic impurity on 2D and 3D TIs
and numerically investigate the existence and features of the bound states induced by it. For the
Gaussian potential, we note that the in-gap bound states can be induced for a strong strength
for a TI. The effective range of the potential is also an important index of the formation of the
bound states. We show that for the realistic parameters of TIs and impurity, the in-gap bound
state solutions can be found.

4.1. Methodology

When an impurity appears on a 2D film or inside a 3D bulk made of TIs, the momentum k̂
is no longer a conserved quantity and is replaced by the real space gradient operator −i E∇.
Since the impurity potential V (r) is isotropic, the 2D and 3D equations can both be reduced
to 1D radial equation sets (equations (16) and (21)), characterized by good quantum numbers
of the corresponding conserved quantities. Using the standard finite difference method [39],
the 1D radial equations can be solved to obtain the eigenenergies and the corresponding radial
eigenwavefunctions spontaneously. By checking the behavior of the eigenwavefunctions within
the bulk gap, those that satisfy ‘|9(r)|2r d−1

→ 0 when r → +∞’ are the in-gap bound states
we expected, where 9(r) is the eigenwavefunction and d the dimensionality.

In this section, we will use two types of Gaussian potential to mimic the influence of a
non-magnetic impurity. First is the standard Gaussian distribution VG(r),

VG(r)=
V0

(
√

2πr0)d
e−(r2/2r2

0 ). (22)

In this form, the unit of V0 is energy multiplied by volume element in Rd-space. r0 controls
the effective range of the impurity potential. Equation (22) converges to V0δ(r) as r → 0. This
form can help us to check whether there are bound states as the impurity potential approaches a
δ-function.

For parameters from 2D Bi2Se3 films or 3D Bi2Se3 bulk, we use a modified Gaussian
distribution UG(r), which can describe a real non-magnetic impurity in a better way:

UG(r)= U0 e−(r2/2r2
0 ). (23)

In this form, U0 directly describes the impurity potential height with the pure energy unit; r0 still
characterizes its effective range. For example, for a single Ag atom deposited onto a 2D Bi2Se3

film, U0 ≈ 3–5 eV and r0 ≈ 3–4 Å.

4.2. 2D

From section 3.2, for a 1D TI accompanied by a δ-impurity, m B = 1/2 is a critical point that
distinguishes the number of surviving bound states as V0 becomes small enough. In higher
dimensions, this feature helps us determine the choice of parameter sets. In 2D, we choose
several typical parameter sets, including model parameters and those from real TI materials. On
the other hand, since in the 2D modified Dirac model there always exists a twofold degeneracy
originating from TRS for h± blocks, we can simply calculate the eigenstates for the h+ block.
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The numbers of independent solutions for the whole 4 × 4 Hamiltonian can be obtained by just
doubling that from the h+ block.

4.2.1. m B = 1. We choose model parameters mv2
= 1, Bh̄2

= 1 and h̄v = 1 as an example of
the m B > 1/2 case. The standard Gaussian impurity potential VG(r) is adopted. Under a specific
combination of (V0, r0), the radial equation (16) is solved for each m j . After checking all m j ,
the total number of in-gap bound states is obtained. By sweeping V0 and r0 in the parameter
space, the phase diagram of how many pairs of in-gap bound states can be trapped is obtained,
as shown in figure 2(a). It was found that as r0 → 0, no in-gap bound states exist. This confirms
the prediction in section 3.1.2 that in 2D a δ-potential cannot trap in-gap bound states. As an
example, for V0 = 7 and r0 = 3, there are in total six pairs of in-gap bound states, with each pair
being time-reversal counterparts and having the same energy. These six energy levels are shown
in figure 2(b), as well as the quantum number m j for h+ block. In figure 2(c), the probability
distributions of bound states are plotted. Each plot indeed describes the distribution of both
degenerate eigenstates since their module squares are the same. It is clear that the states with
opposite m j (for h+ block) do not have opposite energies. This comes from the failure of PHS
once finite VG(r) is added. At last, as |m j | increases, the bound state energy increases and, at
the same time, the eigenwavefunction broadens.

4.2.2. HgTe quantum well (QW). The second example is the HgTe QW. From the experimental
data [7], for a 70 nm thick HgTe QW, mv2

= −10 meV, h̄v = 364.5 meV nm and Bh̄2
=

−686 meV nm2. Thus one has m B ∼ 0.05. The standard Gaussian impurity potential VG(r) is
adopted again. The phase diagram of pair number of in-gap bound states is shown in figure 2(d).
Since the dimensionless parameter m B is quite small (very close to the topologically trivial
regime), the branches with m j = ±1/2 in the phase diagram are greatly distorted with each
other. This makes figure 2(d) look quite different from figure 2(a). Again as r0 → 0, no in-gap
bound states exist. Here we take V0 = 13 eV nm2 and r0 = 2 nm as an instance. Our calculations
show that there are totally two pairs of in-gap bound states, with m j = ±1/2 (for h+ block).
Their energies and wavefunction probability distributions are shown in figures 2(e) and (f),
respectively. Also, the two energy levels are not symmetric about zero energy since PHS does
not hold any more. The pair with m j = 1/2 is much broader than that with m j = −1/2.

4.2.3. Bi2Se3 film. In recent years, Bi2Se3 films composed of several quintuple layers have
attracted more and more interest [36, 37, 40–44]. Impurity atoms, such as Ag, can be deposited
onto these films to investigate their influence on electronic and transport features. Here we
choose a two-quintuple-layer Bi2Se3 as our 2D TI film. The following parameters [41] are
adopted: mv2

= 0.126 eV, h̄v = 2.94 eV Å and Bh̄2
= 21.8 eV Å2. This gives m B ∼ 0.32<

1/2. To mimic a real non-magnetic impurity, the modified Gaussian potential UG(r) is used.
Following a similar process, the (U0, r0) phase diagram of how many pairs of in-gap bound
states can be trapped by a single non-magnetic impurity on a two-quintuple-layer Bi2Se3

is shown in figure 2(g). As an example, the influence of an Ag atom can be modeled by
the Gaussian potential UG(r) with U0 = 4 eV and r0 = 3 Å. Our calculations show that in
this case, there are two pairs of in-gap bound states with m j = ±1/2 (for h+ block), as
shown in figure 2(h). The corresponding wavefunction probability distributions are plotted in
figure 2(i). Rather than the HgTe QW, these results for Bi2Se3 films should be easily checked
by experiments using STM, etc.
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Figure 2. Phase diagrams of how many pairs of bound states can be trapped
when a non-magnetic impurity with Gaussian potential is deposited on 2D
TI films. Panels (a)–(c) are for model parameters: mv2

= 1, h̄v = 1 and
Bh̄2

= 1. Panels (d)–(f) are for 70 nm thick HgTe QW with mv2
= −10 meV,

h̄v = 364.5 meV nm and Bh̄2
= −686 meV nm2. Panels (g)–(i) are for two quin-

tuple layer Bi2Se3 with mv2
= 0.126 eV, h̄v = 2.94 eV Å and Bh̄2

= 21.8 eV Å2.
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Figure 2. (Continued) For the former two cases, the standard Gaussian potential
VG(r) is used, while for Bi2Se3 film UG(r) is adopted. Panels (a), (d) and (g) are
the phase diagrams in the corresponding (V0, r0) or (U0, r0) parameter spaces.
Panels (b), (e) and (h) are the energy levels of in-gap bound states (in the
units of corresponding energy gap 1) at selected points in the corresponding
phase diagrams. Panels (b) is for (V0, r0)= (7, 3), panels (e) is for (V0, r0)=

(13 eV nm2, 2 nm) and panel (h) is for (U0, r0)= (4 eV, 3 Å). The corresponding
m j for h+ block are also indicated. The probability distributions of the
corresponding wavefunctions for each m j are plotted in panels (c), (f) and (i),
respectively. The brightness indicates the magnitude of probability.

4.3. 3D

In 3D, we choose a set of parameters based on those from the anisotropic model for bulk
Bi2Se3 [18]. In that model, one has A1 = 2.2 eV Å, A2 = 4.1 eV Å (correspond to h̄v) and
B1 = 10 eV Å2, B2 = 56.6 eV Å2 (correspond to Bh̄2). We neglect the anisotropy and simply
choose their averages as our parameters h̄v and Bh̄2, respectively. In this case, m B ∼ 1> 1/2.
An interior non-magnetic impurity is modeled by the modified Gaussian potential UG(r). Under
a specific combination of (U0, r0), first for a certain κ , equation (21) is solved to see whether
there exist in-gap bound states. Also one should not forget the additional 2|κ| degeneracy for
a specific κ . After checking all possible κ , we obtain the total number of in-gap bound states
for this (U0, r0) combination. In this way, we obtain the phase diagram of the number of in-gap
bound states in (U0, r0) parameter space, as shown in figure 3(a).

In the simplest way, a cluster of Ag atoms inside a bulk Bi2Se3 can be modeled by
U0 = 3 eV and r0 = 6.5 Å [45], as indicated by the small red circle in the phase diagram, i.e.
figure 3(a). Our calculations show that in this case, there are four bound-state solutions of the
radial equation (belongs to κ = ±1,±2, respectively), as well as four corresponding bound
state energy levels. This is shown in figure 3(b). After considering the 2|κ| degeneracy, there
are totally 12 in-gap bound states. Each one can be uniquely labeled by the three good quantum
numbers ( j, κ,m j). The module square isosurfaces of |9( j,κ,m j )|

2
≡ 10−3 for the 12 bound states

are plotted in figure 3(c). To be more clear, each bound state has the same color in energy level
and module square isosurface. Again, PHS is broken while TRS still holds.

From equation (20), generally the angular part of a 3D in-gap bound state is a mixture
of j ±

1
2 components. However, the module square of the whole wavefunction has simpler

symmetry, as shown in figure 3(c). We found that the bound states for κ = ±1 (correspond to
j = 1/2) have s-symmetry, while those for κ = ±2 (correspond to j = 3/2) have p-symmetry.
This can be understood by directly putting the orthonormalized Laplace spherical harmonics
Y m

l into the wavefunctions. After some simple algebra, finally one has

|ψ 1
2 ,±1,± 1

2
|
2
=

1

4π
·
(
|g1(r)|

2 + |g2(r)|
2
)
,

|ψ 3
2 ,±2,± 1

2
|
2
=

3 cos2 θ + 1

8π
·
(
|ζ1(r)|

2 + |ζ2(r)|
2
)
, (24)

|ψ 3
2 ,±2,± 3

2
|
2
=

3 sin2 θ

8π
·
(
|η1(r)|

2 + |η2(r)|
2
)
,
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Figure 3. (a) Phase diagram of how many bound states can be found when a
non-magnetic impurity with the modified Gaussian potential UG(r) is deposited
inside the bulk Bi2Se3. (b) Energy levels of in-gap bound states at (U0, r0)=

(3 eV, 6.5 Å). The corresponding good quantum numbers ( j, κ) are also listed.
1 is the energy gap. (c) The 12 module square isosurfaces of |9( j,κ,m j )|

2
≡ 10−3

for each bound state labeled by ( j, κ,m j). Each state has the same color in
energy level and isosurface. Parameters: mv2

= 0.28 eV, h̄v = 3.2 eV Å and
Bh̄2

= 33 eV Å2.

where g(ζ, η)1,2(r) are the solutions of equation (21) for the corresponding ( j, κ,m j) state.
Then the symmetry features of the module square of the whole wavefunction are apparent.

To end this section, we point out that the main purpose of this work is to provide a simple
but inspiring way of understanding how non-magnetic impurities affect the electronic energy
structure of TIs in various dimensions. The Ag impurity represents a typical example, from
which the height and width of the Gaussian potential can be estimated. For Ca [46] and Pb [47]
impurities, we expect the same physics. As we know, the Ca atom is lighter than the Ag atom,
but Pb is heavier than the Ag atom. If an Ag impurity could induce a bound state, Pb could also
induce a bound state. However, Ca may not. As long as one knows the model parameters for Ca
or Pb, similar numerical calculations can be performed and the picture we proposed here should
be further verified.
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Figure 4. (a) Probing the impurity-induced in-gap bound states by STM. The ring
formed by these bound states (red) circulating around an impurity atom (blue)
deposited on a thin TI film can be detected by STM when the Fermi surface
is aligned with the bound states in the gap (b). (c) The resonance peak can be
detected in the differential conductance spectrum (dI/dV ) as a function of the
bias voltage (V) when the STM tip is pinned above the bound-state ring in real
space. (d) The resonance peak splits for magnetic impurity.

5. Detecting in-gap bound states by using a scanning tunneling microscope

To detect the in-gap bound states obtained in the previous sections, we propose to observe
by STM the vicinity of a positive-valence atom deposited on a gapped ultrathin film of 3D
TI (figure 4(a)), which is a direct realization of the 2D modified Dirac model with impurity
barrier potential. STM can associate the local density of states (LDOS) of sample surfaces with
the bias voltage dependence of tunneling current [48], allowing the spatial wavefunction at a
certain energy and the energy spectrum at a certain spatial point to be probed.

When fixing the bias voltage to align the Fermi energy with the bound state energy in the
gap (figure 4(b)), the scanning of the sample surface should reveal one or more high LDOS
rings around the impurity atom associated with the bound states. Note that the perfect ring
predicted by the isotropic model should be reshaped with respect to the actual lattice symmetry
in real materials, such as into hexagons. Alternatively, when the STM tip is pinned at the bound-
state ring, the differential conductance (dI/dV ) as a function of the bias voltage (V ) should
demonstrate resonance peaks at the bound state energies in the gap (figure 4(c)). It should
be noted that each energy peak should be twofold spin-degenerate for nonmagnetic impurity
because of TRS. Therefore, one expects the energy peak to split if a magnetic impurity is
adsorbed instead (figure 4(d)).

By far, the STM studies of the impurity on the surface of 3D topological insulators reported
no signature of the topologically protected bound states. Instead, the LDOS map is dominated by
profound standing wave patterns, which originate from the quantum interference of conduction
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electrons from surface bands at the Fermi surface [45, 49]. The reason for the absence of
the bound states is because the gapless Dirac cone of the surface states of a 3D TI does not
support the presence of the bound states. In addition, we emphasized that the ring pattern from
the bound states should be distinguished from those from the quantum interference because
the latter requires that the Fermi surface crosses a band and has a length scale of the Fermi
wavelength [45].

6. Summary

In this work, the in-gap bound states induced by non-magnetic impurities in various dimensions
are systematically investigated based on a modified Dirac model. Distinct from the vacancy case,
the impurity-induced in-gap bound states can have nonzero components at which the impurity
locates. However, generally they are not topologically protected. The format of the impurity
potential and the dimensionality of the TI are both important for their formation. δ-potential has
been proven to be able to trap in-gap bound states in 1D, while fails in 2D and 3D. For general
forms of the impurity potential, formal solutions were obtained and numerical calculations were
performed to explore the existence and behavior of in-gap bound states. In this paper, we focused
on isotropic Gaussian potentials and obtained the phase diagrams of how many bound states
can be trapped in 2D films or 3D bulks for parameter sets from a series of topological nontrivial
materials. For some real experimental configurations, such as Ag atoms deposited on a Bi2Se3

film or inside a bulk Bi2Se3, in-gap bound states were found to be possible. At last, we proposed
a possible method of detecting these in-gap bound states induced by impurities on 2D thin film
or the surface of 3D bulk by STM measurements. These results should be of interest to people
working in this field, and should attract further attention to the bound state physics of TIs.
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