1,359 research outputs found

    On low temperature kinetic theory; spin diffusion, Bose Einstein condensates, anyons

    Full text link
    The paper considers some typical problems for kinetic models evolving through pair-collisions at temperatures not far from absolute zero, which illustrate specific quantum behaviours. Based on these examples, a number of differences between quantum and classical Boltzmann theory is then discussed in more general terms.Comment: 25 pages, minor updates of previous versio

    Fermi Liquid Properties of a Two Dimensional Electron System With the Fermi Level Near a van Hove Singularity

    Full text link
    We use a diagrammatic approach to study low energy physics of a two dimensional electron system where the Fermi level is near van-Hove singularies in the energy spectrum. We find that in most regions of the ϵFT\epsilon_F-T phase diagram the system behaves as a normal Fermi liquid rather than a marginal Fermi liquid. Particularly, the imaginary part of the self energy is much smaller than the excitation energy, which implies well defined quasiparticle excitations, and single particle properties are only weakly affected by the presence of the van-Hove singularities. The relevance to high temperature superconductivity is also discussed.Comment: 10 pages, 4 postscript figure

    Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions

    Full text link
    Consider a dd-dimensional antiferromagnet with a quantum disordered ground state and a gap to bosonic excitations with non-zero spin. In a finite external magnetic field, this antiferromagnet will undergo a phase transition to a ground state with non-zero magnetization, describable as the condensation of a dilute gas of bosons. The finite temperature properties of the Bose gas in the vicinity of this transition are argued to obey a hypothesis of ZERO SCALE-FACTOR UNIVERSALITY for d<2d < 2, with logarithmic violations in d=2d=2. Scaling properties of various experimental observables are computed in an expansion in ϵ=2d\epsilon=2-d, and exactly in d=1d=1.Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz

    Quest for Localized 4-D Black Holes in Brane Worlds

    Get PDF
    We investigate the possibility of obtaining localized black hole solutions in brane worlds by introducing a dependence of the four-dimensional line--element on the extra dimension. An analysis, performed for the cases of an empty bulk and of a bulk containing either a scalar or a gauge field, reveals that no conventional type of matter can support such a dependence. Considering a particular ansatz for the five-dimensional line--element that corresponds to a black hole solution with a ``decaying'' horizon, we determine the bulk energy--momentum tensor capable of sustaining such a behaviour. It turns out that an exotic, shell-like distribution of matter is required. For such solutions, the black hole singularity is indeed localized near the brane and the spacetime is well defined near the AdS horizon, in contrast to the behaviour found in black string type solutions.Comment: 17 pages, RevTex, 3 figures, version to appear in Physical Review D, comments and references added, typos correcte

    Interpretable multimodal learning for cardiovascular hemodynamics assessment.

    Get PDF
    Pulmonary Arterial Wedge Pressure (PAWP) is an essential cardiovascular hemodynamics marker to detect heart failure. In clinical practice, Right Heart Catheterization is considered a gold standard for assessing cardiac hemodynamics while non-invasive methods are often needed to screen high-risk patients from a large population. In this paper, we propose a multimodal learning pipeline to predict PAWP marker. We utilize complementary information from Cardiac Magnetic Resonance Imaging (CMR) scans (short-axis and four-chamber) and Electronic Health Records (EHRs). We extract spatio-temporal features from CMR scans using tensor-based learning. We propose a graph attention network to select important EHR features for prediction, where we model subjects as graph nodes and feature relationships as graph edges using the attention mechanism. We design four feature fusion strategies: early, intermediate, late, and hybrid fusion. With a linear classifier and linear fusion strategies, our pipeline is interpretable. We validate our pipeline on a large dataset of 2,641 subjects from our ASPIRE registry. The comparative study against state-of-the-art methods confirms the superiority of our pipeline. The decision curve analysis further validates that our pipeline can be applied to screen a large population. The code is available at: https://github.com/prasunc/hemodynamic

    Attentive Learning of Sequential Handwriting Movements: A Neural Network Model

    Full text link
    Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409, N00014-92-J-1309); National Science Foundation (IRI-97-20333); National Institutes of Health (I-R29-DC02952-01)

    Raditive decay of single charmed baryons

    Full text link
    The electromagnetic transitions between (JP=3/2+J^{P}={3/2}^{+}) and (JP=1/2+J^{P}={1/2}^{+}) baryons are important decay modes to observe new hadronic states experimentally. For the estimation of these transitions widths, we employ a non-relativistic quark potential model description with color coulomb plus linear confinement potential. Such a description has been employed to compute the ground state masses and magnetic moments of the single heavy flavor baryons. The magnetic moments of the baryons are obtained using the spin-flavor structure of the constituting quark composition of the baryon. Here, we also define an effective constituent mass of the quarks (ecqm) by taking into account the binding effects of the quarks within the baryon. The radiative transition widths are computed in terms of the magnetic moments of the baryon and the photon energy. Our results are compared with other theoretical models.Comment: 06 Pages, Presented at XVIII DAE-BRNS symposium on High energy Physics, Banaras Hindu University, Varansi, INDI

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Characterization of the near-surface nanocrystalline microstructure of ultrasonically treated Ti-6Al-4V using ASTAR™/precession electron diffraction technique

    Get PDF
    The surface of Ti-6Al-4V was treated mechanically by applying ultrasonic nanocrystal surface modification. The effect of this treatment on the hardness, compressive residual stresses and fatigue performance were investigated. It is shown that in terms of the measured nanoindentation hardness values and the presence of compressive residual stresses, the treated sample only differed from the as-received sample in the first 200–300 µm area far from the surface. Also, the microstructure very close to the treated surface (\u3c5 µm) was characterized using a relatively new transmission orientation microscopy technique named ASTAR™/precession electron diffraction. Based on different types of results (e.g., index map and virtual bright field image) acquired by this technique, it is concluded that titanium grains smaller than 10 nm exist within the distance of less than 1 µm from the treated surface. Difficulties associated with ASTAR™/precession electron diffraction technique to characterize this challenging near-surface area are discussed
    corecore