1,496 research outputs found

    POSTURAL EFFECTS ON COMPARTMENTAL VOLUME CHANGES OF BREATHING BY OPTOELECTRONIC PLETHYSMOGRAPHY IN HEALTHY SUBJECTS

    Get PDF
    Breathing pattern was an important factor to affect the performance of sports for athletes. Optoelectronic plethysmography (OEP) was a new method to evaluate breathing pattern by measuring compartmental volume (upper thorax (UT), lower thorax (LT), and abdomen (AB)) freely without limitation. Previous study already investigated the swimmers had better breathing pattern measured by OEP (Karine et al., 2008) in sitting posture. Swimming, such as backstroke, is perfromed in supine posture, but previous study did not consider the postural effect on breathing pattern. This study explored the compartmental volume changes of healthy subjects in different postures

    Hamiltonian Formalism of the de-Sitter Invariant Special Relativity

    Full text link
    Lagrangian of the Einstein's special relativity with universal parameter cc (SRc\mathcal{SR}_c) is invariant under Poincar\'e transformation which preserves Lorentz metric ημν\eta_{\mu\nu}. The SRc\mathcal{SR}_c has been extended to be one which is invariant under de Sitter transformation that preserves so called Beltrami metric BμνB_{\mu\nu}. There are two universal parameters cc and RR in this Special Relativity (denote it as SRcR\mathcal{SR}_{cR}). The Lagrangian-Hamiltonian formulism of SRcR\mathcal{SR}_{cR} is formulated in this paper. The canonic energy, canonic momenta, and 10 Noether charges corresponding to the space-time's de Sitter symmetry are derived. The canonical quantization of the mechanics for SRcR\mathcal{SR}_{cR}-free particle is performed. The physics related to it is discussed.Comment: 24 pages, no figur

    Interfacial assembly inspired by marine mussels and antifouling effects of polypeptoids : a neutron reflection study

    Get PDF
    Polypeptoid-coated surfaces and many surface-grafted hydrophilic polymer brushes have been proven efficient in antifouling-the prevention of nonspecific biomolecular adsorption and cell attachment. Protein adsorption, in particular, is known to mediate subsequent cell-surface interactions. However, the detailed antifouling mechanism of polypeptoid and other polymer brush coatings at the molecular level is not well understood. Moreover, most adsorption studies focus only on measuring a single adsorbed mass value, and few techniques are capable of characterizing the hydrated in situ layer structure of either the antifouling coating or adsorbed proteins. In this study, interfacial assembly of polypeptoid brushes with different chain lengths has been investigated in situ using neutron reflection (NR). Consistent with past simulation results, NR revealed a common two-step structure for grafted polypeptoids consisting of a dense inner region that included a mussel adhesive-inspired oligopeptide for grafting polypeptoid chains and a highly hydrated upper region with very low polymer density (molecular brush). Protein adsorption was studied with human serum albumin (HSA) and fibrinogen (FIB), two common serum proteins of different sizes but similar isoelectric points (IEPs). In contrast to controls, we observed higher resistance by grafted polypeptoid against adsorption of the larger FIB, especially for longer chain lengths. Changing the pH to close to the IEPs of the proteins, which generally promotes adsorption, also did not significantly affect the antifouling effect against FIB, which was corroborated by atomic force microscopy imaging. Moreover, NR enabled characterization of the in situ hydrated layer structures of the polypeptoids together with proteins adsorbed under selected conditions. While adsorption on bare SiO2 controls resulted in surface-induced protein denaturation, this was not observed on polypeptoids. Our current results therefore highlight the detailed in situ view that NR may provide for characterizing protein adsorption on polymer brushes as well as the excellent antifouling behavior of polypeptoids

    Implicações das prioridades de gasto do estado sobre a dinâmica econômica brasileira

    Get PDF
    XX Encontro Nacional de Economia Política: desenvolvimento Latino-Americano, Integração e Inserção Internacional - UNILA, Foz do Iguaçu, 26 a 29 de maio de 2015A sociedade brasileira tem passado, nas últimas décadas, por transformações importantes em seu contexto político e econômico. Este artigo trata principalmente de dois fatos que ainda, atualmente, impactam na dinâmica do gasto público. O processo de redemocratização, em fi nais dos anos de 1980 e a globalização econômica com a consequente fi nanceirização dos mercados. Estas transformações infl uenciam a forma de atuação do Estado na economia, principalmente no que se refere à defi nição de alocação de recursos públicos. Assim, este artigo aprofunda o entendimento da evolução das despesas públicas na esfera federal, pela análise dos gastos sociais bem como da dívida pública, constatando os impactos econômicos destas despesas e levantando conclusões sobre a viabilidade de determinados gastos governamentais sob a dinâmica econômica e social do país. A realização deste estudo contribui para o debate sobre as estratégias de política fi scal que vêm sendo adotadas e o impacto de priorização de determinados gastos, sobre o crescimento econômico do paísBanco Nacional de Desenvolvimento Econômico e Social (BNDES); Usina Hidrelétrica de Itaipu (ITAIPU); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e Universidade Federal da Integração Latino-Americana (UNILA

    Scaling Laws and Transient Times in 3He Induced Nuclear Fission

    Full text link
    Fission excitation functions of compound nuclei in a mass region where shell effects are expected to be very strong are shown to scale exactly according to the transition state prediction once these shell effects are accounted for. The fact that no deviations from the transition state method have been observed within the experimentally investigated excitation energy regime allows one to assign an upper limit for the transient time of 10 zs.Comment: 7 pages, TeX type, psfig, submitted to Phys. Rev. C, also available at http://csa5.lbl.gov/moretto/ps/he3_paper.p

    Broadly neutralizing antibodies from an individual that naturally cleared multiple hepatitis c virus infections uncover molecular determinants for E2 targeting and vaccine design

    Get PDF
    Cumulative evidence supports a role for neutralizing antibodies contributing to spontaneous viral clearance during acute hepatitis C virus (HCV) infection. Information on the timing and specificity of the B cell response associated with clearance is crucial to inform vaccine design. From an individual who cleared three sequential HCV infections with genotypes 1b, 1a and 3a strains, respectively, we employed peripheral B cells to isolate and characterize neutralizing human monoclonal antibodies (HMAbs) to HCV after the genotype 1 infections. The majority of isolated antibodies, designated as HMAbs 212, target conformational epitopes on the envelope glycoprotein E2 and bound broadly to genotype 1–6 E1E2 proteins. Further, some of these antibodies showed neutralization potential against cultured genotype 1–6 viruses. Competition studies with defined broadly neutralizing HCV HMAbs to epitopes in distinct clusters, designated antigenic domains B, C, D and E, revealed that the selected HMAbs compete with B, C and D HMAbs, previously isolated from subjects with chronic HCV infections. Epitope mapping studies revealed domain B and C specificity of these HMAbs 212. Sequential serum samples from the studied subject inhibited the binding of HMAbs 212 to autologous E2 and blocked a representative domain D HMAb. The specificity of this antibody response appears similar to that observed during chronic infection, suggesting that the timing and affinity maturation of the antibody response are the critical determinants in successful and repeated viral clearance. While additional studies should be performed for individuals with clearance or persistence of HCV, our results define epitope determinants for antibody E2 targeting with important implications for the development of a B cell vaccine.</div

    Interatomic potentials for atomistic simulations of the Ti-Al system

    Full text link
    Semi-empirical interatomic potentials have been developed for Al, alpha-Ti, and gamma-TiAl within the embedded atomic method (EAM) by fitting to a large database of experimental as well as ab-initio data. The ab-initio calculations were performed by the linear augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide reasonable description of the lattice thermal expansion, demonstrating their usefulness in the molecular dynamics or Monte Carlo studies at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in gamma-TiAl calculated with the EAM potential is in a fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in gamma-TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that gamm-TiAl is an antisite disorder compound in agreement with experimental data.Comment: 46 pages, 6 figures (Physical Review B, in press

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe
    corecore