36 research outputs found

    Transformation of animal utilization strategies from the late Neolithic to the Han Dynasty in the Hexi Corridor, northwest China: Zooarchaeological and stable isotopic evidence

    Get PDF
    The trajectory and influencing factors for changes to ancient human livelihoods in the Hexi Corridor of northwest China have been intensively discussed. The Hexi Corridor is a key crossroads for trans-Eurasian exchange in both the prehistoric and historical periods. Although most studies have focused on the reconstruction of human paleodiet and plant subsistence, the diachronic change of animal utilization strategies spanning the prehistoric and historical periods remains unclear, due to the absence of zooarchaeological and isotopic studies, especially in Han Dynasty (202 BCE–220 CE). Here we report new zooarchaeological, stable isotope, and radiocarbon dating data from the Heishuiguo Cemetery of the Han Dynasty in the Hexi Corridor, indicating that humans mainly used domestic chickens, pigs and sheep as funerary objects, with other buried livestock including cattle, horses and dogs. Stable carbon and nitrogen isotope data suggest humans might have fed chickens, pigs and dogs more C4 foods (likely millets or their byproducts) than herbivorous livestock in the Heishuiguo during the Han Dynasty. Compared to other prehistoric zooarchaeological and isotopic studies in the Hexi Corridor, we detected an increasing significance of herbivorous livestock in animal utilization strategies compared with omnivorous livestock, and a basic declining weight of C4 foods in fodders from ∌2,300 to 200 BCE, which was probably induced by long-distance exchange and climate fluctuation. However, the trend was reversed during the Han Dynasty in the Hexi Corridor, primarily due to the control of the area by the Han Empire and the subsequent massive immigration from the Yellow River valley of north China

    Assessing COVID-19 Vaccine Hesitancy, Confidence, and Public Engagement: A Global Social Listening Study.

    Get PDF
    Background Monitoring public confidence and hesitancy is crucial for the COVID-19 vaccine rollout. Social media listening (infoveillance) can not only monitor public attitudes on COVID-19 vaccines but also assess the dissemination of and public engagement with these opinions.ObjectiveThis study aims to assess global hesitancy, confidence, and public engagement toward COVID-19 vaccination. Methods We collected posts mentioning the COVID-19 vaccine between June and July 2020 on Twitter from New York (United States), London (United Kingdom), Mumbai (India), and Sao Paulo (Brazil), and Sina Weibo posts from Beijing (China). In total, we manually coded 12,886 posts from the five global metropolises with high COVID-19 burdens, and after assessment, 7032 posts were included in the analysis. We manually double-coded these posts using a coding framework developed according to the World Health Organization's Confidence, Complacency, and Convenience model of vaccine hesitancy, and conducted engagement analysis to investigate public communication about COVID-19 vaccines on social media.ResultsAmong social media users, 36.4% (571/1568) in New York, 51.3% (738/1440) in London, 67.3% (144/214) in Sao Paulo, 69.8% (726/1040) in Mumbai, and 76.8% (2128/2770) in Beijing indicated that they intended to accept a COVID-19 vaccination. With a high perceived risk of getting COVID-19, more tweeters in New York and London expressed a lack of confidence in vaccine safety, distrust in governments and experts, and widespread misinformation or rumors. Tweeters from Mumbai, Sao Paulo, and Beijing worried more about vaccine production and supply, whereas tweeters from New York and London had more concerns about vaccine distribution and inequity. Negative tweets expressing lack of vaccine confidence and misinformation or rumors had more followers and attracted more public engagement online. Conclusions COVID-19 vaccine hesitancy is prevalent worldwide, and negative tweets attract higher engagement on social media. It is urgent to develop an effective vaccine campaign that boosts public confidence and addresses hesitancy for COVID-19 vaccine rollouts

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development.</p

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development

    Insights into Circulating Tumor Cell Clusters: A Barometer for Treatment Effects and Prognosis for Prostate Cancer Patients

    No full text
    Prostate cancer (PCa) exhibits high cellular heterogeneity across patients. Therefore, there is an urgent need for more real-time and accurate detection methods, in both prognosis and treatment in clinical settings. Circulating tumor cell (CTC) clusters, a population of tumor cells and non-malignant cells in the blood of patients with tumors, are a promising non-invasive tool for screening PCa progression and identifying potential benefit groups. CTC clusters are associated with tumor metastasis and possess stem-like characteristics, which are likely attributable to epithelial&ndash;mesenchymal transition (EMT). Additionally, these biological properties of CTC clusters, particularly androgen receptor V7, have indicated the potential to reflect curative effects, guide treatment modalities, and predict prognosis in PCa patients. Here, we discuss the role of CTC clusters in the mechanisms underlying PCa metastasis and clinical applications, with the aim of informing more appropriate clinical decisions, and ultimately, improving the overall survival of PCa patients

    Confidence, acceptance and willingness to pay for the COVID-19 vaccine among migrants in Shanghai, China : A cross-sectional study

    Get PDF
    Understanding the public’s attitude towards COVID-19 vaccination and their acceptance could help facilitate the COVID-19 rollout. This study aimed to assess the acceptance and willingness to pay (WTP) for the COVID-19 vaccine among migrants in Shanghai, China. A cross-sectional study was conducted among 2126 migrants in Shanghai for the period 1–20 November 2020. Convenience sampling was used to recruit respondents in workplaces with large numbers of migrant workers. Multivariable (ordered) logistic regressions were used to examine factors associated with acceptance and WTP of the COVID-19 vaccine. Most (89.1%) migrants would accept COVID-19 vaccination. Over 90.0% perceived the COVID-19 vaccine as important, while only 75.0% and 77.7% perceived vaccines safe and effective. Socio-demographic factors were not significantly associated with vaccine acceptance, but confidence in the importance (OR 8.71, 95% CI 5.89–12.89), safety (OR 1.80, 95% CI 1.24–2.61) and effectiveness (OR 2.66, 95% CI 1.83–3.87) of COVID-19 vaccine was significantly positively associated with vaccine acceptance. The top reasons for vaccine hesitancy were lack of vaccine information and confidence. The proportion of those definitely willing to get the COVID-19 vaccine was 20% lower if paid by themselves than free vaccination. Migrants were willing to pay a median amount of USD 46 for the COVID-19 vaccine. Results show that a high acceptance of the COVID-19 vaccine was universal among migrants in Shanghai. Concerns about vaccine safety, effectiveness and high costs of the COVID-19 vaccine may hinder their uptake. Effective health communication to build confidence in the COVID-19 vaccine and subsidies toward the costs of these vaccines are needed to improve uptake.publishedVersionPeer reviewe

    Quercetin Attenuates KLF4-Mediated Phenotypic Switch of VSMCs to Macrophage-like Cells in Atherosclerosis: A Critical Role for the JAK2/STAT3 Pathway

    No full text
    The objective of this study was to elucidate the protective role of quercetin in atherosclerosis by examining its effect on the phenotypic switch of vascular smooth muscle cells (VSMCs) to macrophage-like cells and the underlying regulatory pathways. Aorta tissues from apolipoprotein E-deficient (ApoE KO) mice fed a high-fat diet (HFD), treated with or without 100 mg/kg/day quercetin, were analyzed for histopathological changes and molecular mechanisms. Quercetin was found to decrease the size of atherosclerotic lesions and mitigate lipid accumulation induced by HFD. Fluorescence co-localization analysis revealed a higher presence of macrophage-like vascular smooth muscle cells (VSMCs) co-localizing with phospho-Janus kinase 2 (p-JAK2), phospho-signal transducer and activator of transcription 3 (p-STAT3), and KrĂŒppel-like factor 4 (KLF4) in regions of foam cell aggregation within aortic plaques. However, this co-localization was reduced following treatment with quercetin. Quercetin treatment effectively inhibited the KLF4-mediated phenotypic switch in oxidized low-density lipoprotein (ox-LDL)-loaded mouse aortic vascular smooth muscle cells (MOVAS), as indicated by decreased expressions of KLF4, LGALS3, CD68, and F4/80, increased expression of alpha smooth muscle actin (α-SMA), reduced intracellular fluorescence Dil-ox-LDL uptake, and decreased lipid accumulation. In contrast, APTO-253, a KLF4 activator, was found to reverse the effects of quercetin. Furthermore, AG490, a JAK2 inhibitor, effectively counteracted the ox-LDL-induced JAK2/STAT3 pathway-dependent switch to a macrophage-like phenotype and lipid accumulation in MOVAS cells. These effects were significantly mitigated by quercetin but exacerbated by coumermycin A1, a JAK2 activator. Our research illustrates that quercetin inhibits the KLF4-mediated phenotypic switch of VSMCs to macrophage-like cells and reduces atherosclerosis by suppressing the JAK2/STAT3 pathway

    The Hydrochemistry, Ionic Source, and Chemical Weathering of a Tributary in the Three Gorges Reservoir

    No full text
    Riverine dissolved matter reflects geochemical genesis information, which is vital to understand and manage the water environment in a basin. The Ganjing River located in the hinterland of the Three Gorges Reservoir was systematically investigated to analyze the composition and spatial variation of riverine ions, probe the source and influencing factors, and assess the chemical weathering rates and CO2 consumption. The results showed that the total dissolved solid value (473.31 ± 154.87 mg/L) with the type of “HCO3−–Ca2+” was higher than that of the global rivers’ average. The hydrochemical parameters were relatively stable in the lower reservoir area of the Ganjing River, which was largely influenced by the backwater of Three Gorges Reservoir. The carbonate weathering source contributed 69.63% of TDS (Total dissolved solids), which generally dominated the hydrochemical characteristics. The contribution rates of atmospheric rainfall were relatively low and stable in the basin, with an average of 4.01 ± 1.28%. The average contribution rate of anthropogenic activities was 12.05% in the basin and even up to 27.80% in the lower reservoir area of the Ganjing River, which illustrated that the impoundment of Three Gorges Reservoir had brought great challenges to the water environment in the reservoir bay. The empirical power functions were tentatively proposed to eliminate the dilution effect caused by runoff discharge on the basis of previous studies. Accordingly, the rock weathering rate was calculated as 23.54 t/km2 in the Ganjing River Basin, which consumed atmospheric CO2 with a flux of 6.88 × 105 mol/y/km2. These results highlight the geochemical information of tributaries in the hinterland of the Three Gorges Reservoir, have significant implications for understanding the impact of impoundment, and provide data support for the integrated management of water resources in the Ganjing River Basin

    Morphological background detection and illumination normalization of text image with poor lighting.

    No full text
    In this paper, some morphological transformations are used to detect the unevenly illuminated background of text images characterized by poor lighting, and to acquire illumination normalized result. Based on morphologic Top-Hat transform, the uneven illumination normalization algorithm has been carried out, and typically verified by three procedures. The first procedure employs the information from opening based Top-Hat operator, which is a classical method. In order to optimize and perfect the classical Top-Hat transform, the second procedure, featuring the definition of multi direction illumination notion, utilizes opening by reconstruction and closing by reconstruction based on multi direction structuring elements. Finally, multi direction images are merged to the final even illumination image. The performance of the proposed algorithm is illustrated and verified through the processing of different ideal synthetic and camera collected images, with backgrounds characterized by poor lighting conditions
    corecore