5 research outputs found

    Properties of flash roasted products from low-grade refractory iron tailings and improvement method for their magnetic separation index

    No full text
    The properties of flash-roasted products from low-grade refractory iron tailings (IGRIT) and the improved method for their magnetic separation index were investigated by the MLA, XRD, iron phase analysis, and magnetic separation test. The results show the siderite and hematite in the IGRIT have been converted to magnetic iron after the flash roasting treatment with a time of 3-5 s; magnetic iron in roasted products has a monomeric dissociation of 37.20%, and a 75−100% exposed area of contiguous bodies as rich intergrowth was 29.83%, and that a 32.97 poor intergrowth; moreover, magnetic iron is mainly associated with muscovite and quartz. It is also found that the regrindingmagnetic separation (1500 Oe) treatment of the middling was beneficial to obtain more qualified iron concentrate products. Therefore, roasted products magnetic separation process in the absence/ presence of the middling regrinding-magnetic separation treatment obtains an iron concentrate with 60.10%/ 60.12% iron grade and 72.04%/81.13% iron recovery. The iron concentrate from the magnetic separation process with middling regrinding-magnetic separation can have a 9% higher recovery than the process without middling regrinding-magnetic separation. The work is significant for helping to improve the utilization of IGRIT

    The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load

    No full text
    To cope with the increasing charging demand of electric vehicle (EV), this paper presents a forecasting method of EV charging load based on random forest algorithm (RF) and the load data of a single charging station. This method is completed by the classification and regression tree (CART) algorithm to realize short-term forecast for the station. At the same time, the prediction algorithm of the daily charging capacity of charging stations with different scales and locations is proposed. By combining the regression and classification algorithms, the effective learning of a large amount of historical charging data is completed. The characteristic data is divided from different aspects, realizing the establishment of RF and the effective prediction of fluctuate charging load. By analyzing the data of each charging station in Shenzhen from the aspect of time and space, the algorithm is put into practice. The application form of current data in the algorithm is determined, and the accuracy of the prediction algorithm is verified to be reliable and practical. It can provide a reference for both power suppliers and users through the prediction of charging load

    Properties of flash roasted products from low-grade refractory iron tailings and improvement method for their magnetic separation index

    No full text
    Abstract The properties of flash-roasted products from low-grade refractory iron tailings (IGRIT) and the improved method for their magnetic separation index were investigated by the MLA, XRD, iron phase analysis, and magnetic separation test. The results show the siderite and hematite in the IGRIT have been converted to magnetic iron after the flash roasting treatment with a time of 3‐5 s; magnetic iron in roasted products has a monomeric dissociation of 37.20%, and a 75‐100% exposed area of contiguous bodies as rich intergrowth was 29.83%, and that a 32.97 poor intergrowth; moreover, magnetic iron is mainly associated with muscovite and quartz. It is also found that the regrinding-magnetic separation (1500 Oe) treatment of the middling was beneficial to obtain more qualified iron concentrate products. Therefore, roasted products magnetic separation process in the absence/ presence of the middling regrinding-magnetic separation treatment obtains an iron concentrate with 60.10%/ 60.12% iron grade and 72.04%/81.13% iron recovery. The iron concentrate from the magnetic separation process with middling regrinding-magnetic separation can have a 9% higher recovery than the process without middling regrinding-magnetic separation. The work is significant for helping to improve the utilization of IGRIT
    corecore