11 research outputs found

    Overview and prospect of the detection capability of China's first precipitation measurement satellite FY-3G

    Get PDF
    Based on introducing the technical characteristics of FY-3G, which is China's first precipitation measurement satellite and successfully launched at 09∶36 BT on April 16 in 2023, this paper focuses on the precipitation detection capabilities and application prospect in rainstorm monitoring of FY-3G. The results show that, with an orbit at 407 km and an inclination angle of 50°, and equipped with a dual-frequency Ka/Ku band precipitation measurement radar, microwave, and optical imaging instruments, the FY-3G satellite can detect the three-dimensional structure of disastrous weather systems such as typhoon, heavy rainfall, and other strong convection events in most of China. At the design level, FY-3G has precipitation detection capabilities comparable to the current US Second Generation Global Precipitation Measurement Program (GPM) Core Satellite (GPMCO), but better payload types, quantities, and channel settings compared with the GPMCO satellite. After the service operation, the FY-3G satellite, together with other polar-orbiting meteorological satellites such as FY-3 AM, PM, and EM, as well as high-orbit geostationary satellites, will form the Fengyun precipitation detection constellation system, which will improve the overall precipitation detection capability of the Fengyun Satellite constellation and provide stronger basic support for meteorological disaster prevention and mitigation

    Protein target highlights in CASP15: Analysis of models by structure providers

    Get PDF
    We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF
    Neuromatch Academy (https://academy.neuromatch.io; (van Viegen et al., 2021)) was designed as an online summer school to cover the basics of computational neuroscience in three weeks. The materials cover dominant and emerging computational neuroscience tools, how they complement one another, and specifically focus on how they can help us to better understand how the brain functions. An original component of the materials is its focus on modeling choices, i.e. how do we choose the right approach, how do we build models, and how can we evaluate models to determine if they provide real (meaningful) insight. This meta-modeling component of the instructional materials asks what questions can be answered by different techniques, and how to apply them meaningfully to get insight about brain function

    Neuromatch Academy: a 3-week, online summer school in computational neuroscience

    Get PDF

    Designing Ionic Conductive Elastomers Using Hydrophobic Networks and Hydrophilic Salt Hydrates with Improved Stability in Air

    No full text
    Abstract Existing soft ionic conductors fall into two distinct categories: liquid‐rich ionic conductors containing large amounts of liquid electrolytes (≈70–90 wt.% water for hydrogels and ≈20–80 wt.% ionic liquids for ionogels), and liquid‐free ionic conductors that do not contain liquid components (e.g., ionic conductive elastomers). However, they are often plagued by dehydration, leakage of toxic ionic liquids, and air aging. Here, using hydrophobic polymer networks and hydrophilic salt hydrates, ionic conductive elastomers (s‐ICEs for short) containing only a tiny amount of bound water (≈1–5 wt.% are synthesized). Thanks to the small embedded water content, the s‐ICEs are advantageous over liquid‐rich ionic conductors in terms of enhanced mechanical/electrical stabilities and safety; they also outperform previously reported liquid‐free ionic conductors by avoiding air‐aging issues. The s‐ICEs introduced here also show excellent stretchability, good elasticity, high fracture resistance, desirable optical transparency and ionic conductivity, which are comparable to those of state‐of‐the‐art liquid‐rich and liquid‐free ionic conductors. With all the above advantages, the s‐ICE represents an ideal material for practical applications of soft ionotronics in ambient conditions

    Dietary Sodium Butyrate Improves Intestinal Health of Triploid <i>Oncorhynchus mykiss</i> Fed a Low Fish Meal Diet

    No full text
    This study aimed to determine the effects of dietary sodium butyrate (NaB) on the growth and gut health of triploid Oncorhynchus mykiss juveniles (8.86 ± 0.36 g) fed a low fish meal diet for 8 weeks, including the inflammatory response, histomorphology, and the composition and functional prediction of microbiota. Five isonitrogenous and isoenergetic practical diets (15.00% fish meal and 21.60% soybean meal) were supplemented with 0.00% (G1), 0.10% (G2), 0.20% (G3), 0.30% (G4), and 0.40% NaB (G5), respectively. After the feeding trial, the mortality for G3 challenged with Aeromonas salmonicida for 7 days was lower than that for G1 and G5. The optimal NaB requirement for triploid O. mykiss based on weight gain rate (WGR) and the specific growth rate (SGR) was estimated to be 0.22% and 0.20%, respectively. The activities of intestinal digestive enzymes increased in fish fed a NaB diet compared to G1 (p O. mykiss fed a low fish meal diet
    corecore