774 research outputs found

    Quantum transport in topological semimetals under magnetic fields

    Get PDF
    published_or_final_versio

    Non-magnetic impurities and in-gap bound states in topological insulators

    Get PDF
    In-gap bound states induced by non-magnetic impurities in various dimensional topological insulators are investigated based on a modified Dirac model that considers quadratic corrections to the mass term. Their existence and features greatly rely on the potential form of the impurity as well as the dimensionality of the topological insulator. It is analytically proven that the impurity potential modeled by the delta function can induce the bound states in one dimension (1D), but not in two and three. For a single non-magnetic impurity with a general isotropic potential, formal solutions are obtained and further numerical calculations are performed. In particular, the in-gap bound states induced by a non-magnetic impurity with isotropic Gaussian potentials in two-dimensional (2D) and three-dimensional (3D) topological insulators are numerically investigated. Information on how many in-gap bound states can be trapped by a non-magnetic Gaussian impurity is presented for the parameters from a series of topologically non-trivial materials. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.published_or_final_versio

    Vacancy-induced bound states in topological insulators

    Get PDF
    We present an exact solution of a modified Dirac equation for topological insulator in the presence of a hole or vacancy to demonstrate that vacancies can induce bound states in the band gap of topological insulators. They arise due to the Z 2 classification of time-reversal invariant insulators. Coexistence of the in-gap bound states and the edge or surface states in topological insulators suggests that imperfections may affect transport properties of topological insulators via additional bound states near the system boundary. © 2011 American Physical Society.published_or_final_versio

    A computational study of the interaction noise from a small axial-flow fan

    Get PDF
    Small axial-flow fans used for computer cooling and many other appliances feature a rotor driven by a downstream motor held by several cylindrical struts. This study focuses on the aerodynamic mechanism of rotor-strut interaction for an isolated fan. The three-dimensional, unsteady flow field is calculated using FLUENT®, and the sound radiation predicted by acoustic analogy is compared with measurement data. Striking differences are found between the pressure oscillations in various parts of the structural surfaces during an interaction event. The suction surface of the blade experiences a sudden increase in pressure when the blade trailing edge sweeps past a strut, while the process of pressure decrease on the pressure side of the blade is rather gradual during the interaction. The contribution of the latter towards the total thrust force on the structure is cancelled out significantly by that on the strut. In terms of the acoustic contributions from the rotor and strut, the upstream rotor dominates and this feature differs from the usual rotor-stator interaction acoustics in which the downstream part is responsible for most of the noise. It is therefore argued that the dominant interaction mechanism is potential flow in nature. © 2007 Acoustical Society of America.published_or_final_versio

    A computational study of the interaction noise from a small axial-flow fan

    Get PDF
    Small axial-flow fans used for computer cooling and many other appliances feature a rotor driven by a downstream motor held by several cylindrical struts. This study focuses on the aerodynamic mechanism of rotor-strut interaction for an isolated fan. The three-dimensional, unsteady flow field is calculated using FLUENT®, and the sound radiation predicted by acoustic analogy is compared with measurement data. Striking differences are found between the pressure oscillations in various parts of the structural surfaces during an interaction event. The suction surface of the blade experiences a sudden increase in pressure when the blade trailing edge sweeps past a strut, while the process of pressure decrease on the pressure side of the blade is rather gradual during the interaction. The contribution of the latter towards the total thrust force on the structure is cancelled out significantly by that on the strut. In terms of the acoustic contributions from the rotor and strut, the upstream rotor dominates and this feature differs from the usual rotor-stator interaction acoustics in which the downstream part is responsible for most of the noise. It is therefore argued that the dominant interaction mechanism is potential flow in nature. © 2007 Acoustical Society of America.published_or_final_versio

    Quadratic magnetic field dependence of magnetoelectric photocurrent

    Get PDF
    We experimentally study the spin and electric photocurrents excited by a linearly polarized light via direct interband transitions in an InGaAs/InAlAs quantum well. In the absence of a magnetic field, the linearly polarized light induces a pure spin current due to the spin-orbit coupling, which may be transformed into a measurable electric current by applying an in-plane magnetic field. The induced electric photocurrent is linear with the in-plane magnetic field. Here, we report a quadratic magnetic field dependence of the photocurrent in the presence of an additional perpendicular component of the magnetic field. We attribute the observation to the Hall effect of magnetoelectric photocurrent. © 2011 American Physical Society.published_or_final_versio

    Magnetoelectric photocurrent generated by direct interband transitions in InGaAs/InAlAs two-dimensional electron gas

    Get PDF
    We report the observation of magnetoelectric photocurrent generated via direct interband transitions in an InGaAs/InAlAs two-dimensional electron gas by a linearly polarized incident light. The electric current is proportional to the in-plane magnetic field, which unbalances the velocities of the photoexcited carriers with opposite spins and consequently generates the electric current from a hidden spin photocurrent. The spin photocurrent can be evaluated from the measured electric current, and the conversion coefficient of spin photocurrent to electric current is self-consistently estimated to be 10-3-10 -2 per Tesla. The observed light-polarization dependence of the electric current is well explained by a theoretical model which reveals the wave vector angle dependence of the photoexcited carrier density. © 2010 The American Physical Society.published_or_final_versio

    Suppression of photoconductivity by magnetic field in epitaxial manganite thin films

    Get PDF
    The erasure of photoinduced resistance (PR) by the magnetic field was investigated in manganite films. The PR was significantly suppressed when a magnetic field was introduced at low temperature. The decrease (or increase) of PR with increment of magnetic field was observed in ferromagnetic (or paramagnetic) phases of films, respectively. Our results are suggested to be the coaction of two effects under magnetic fields: (i) the reorientation of domains and spin directions of photoexcited carriers and (ii) electrons trapped around oxygen vacancies released and recombined with majority carriers in films. The interplay of the external fields is a good demonstration of the strong coupling between spins and charges in colossal magnetoresistance materials. © 2012 American Institute of Physics.published_or_final_versio
    corecore