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Topological semimetals are three-dimensional topological states of matter, in which the conduction
and valence bands touch at a finite number of points, i.e., the Weyl nodes. Topological semimetals
host paired monopoles and antimonopoles of Berry curvature at the Weyl nodes and topologically
protected Fermi arcs at certain surfaces. We review our recent works on quantum transport in topo-
logical semimetals, according to the strength of the magnetic field. At weak magnetic fields, there are
competitions between the positive magnetoresistivity induced by the weak anti-localization effect and
negative magnetoresistivity related to the nontrivial Berry curvature. We propose a fitting formula
for the magnetoconductivity of the weak anti-localization. We expect that the weak localization may
be induced by inter-valley effects and interaction effect, and occur in double-Weyl semimetals. For
the negative magnetoresistance induced by the nontrivial Berry curvature in topological semimetals,
we show the dependence of the negative magnetoresistance on the carrier density. At strong magnetic
fields, specifically, in the quantum limit, the magnetoconductivity depends on the type and range of
the scattering potential of disorder. The high-field positive magnetoconductivity may not be a com-
pelling signature of the chiral anomaly. For long-range Gaussian scattering potential and half filling,
the magnetoconductivity can be linear in the quantum limit. A minimal conductivity is found at the
Weyl nodes although the density of states vanishes there.
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anti-localization, chiral anomaly
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1 Introduction

Weyl semimetal is a three-dimensional (3D) topologi-
cal state of matter, in which the conduction and va-
lence energy bands touch at a finite number of nodes
[1, 2]. The nodes always appear in pairs, in each pair
the quasiparticles carry opposite chirality and linear dis-
persion, much like a 3D analog of graphene. In the past
few years, a number of materials have been suggested
to host Weyl fermions [3–14]. The topological semimet-
als can be simply classified into Weyl semimetals and
Dirac semimetals. In a Weyl semimetal, each Weyl
node is non-degenerate, while in a Dirac semimetal, the
Weyl nodes are degenerate due to time-reversal and in-
version symmetry [9]. Recently, angle-resolved photoe-
mission spectroscopy (ARPES) has identified the Dirac
nodes in (Bi1−xInx)2Se3 [15, 16], Na3Bi [10, 12, 17, 18],
Cd3As2 [12, 19–22], and Weyl nodes in the TaAs family
[23–26] and YbMnBi2 [27].

The monopoles hosted by topological semimetals may
lead to a number of novel transport effects [3–6, 28–
42], including the “chiral anomaly” [28–34], the anoma-
lous Hall effect [3–6], the chiral magnetic effect [35–38].
There have been growing efforts exploring the transport
in topological semimetals, including Bi0.97Sb0.03 [43, 44],
ZrTe5 [45–47], Na3Bi [48], Cd3As2 [49–61], TaAs [62, 63],
TaP [64–66], NbAs [67, 68], NbP [55, 69], HfTe5 [70], etc.

Study of magneto-transport properties is one of the
research focuses in Weyl semimetals. According to the
strength of the magnetic field, the transport in topolog-
ical semimetals can be classified into four regimes. (i)
Near zero field, one has a positive magnetoresistance
from the weak anti-localization effect. (ii) At weak paral-
lel magnetic fields, there is a negative magnetoresistance
arising from the nontrivial Berry curvature in topological
semimetals. (iii) At intermediate magnetic fields, there is
the quantum oscillation of resistivity due to the Landau
quantization of energy states. (iv) At strong magnetic
field, specifically, when only the lowest Landau band is
occupied, it is controversial whether a negative magne-
toresistance can be regarded as a signature for the chiral
anomaly. Also, in most experiments, there is large mag-
netoresistance in perpendicular magnetic fields, some-
times linearly increases with the field.

In this paper, we review our recent efforts on the
quantum transport in topological semimetals [58, 71–
75]. Part of the contents has been reviewed in Refs.
[76, 77], where the focus was the weak localization and

anti-localization effects. There have been several review
articles on topological semimetals [78]. In Section 2, we
introduce the models we used for topological semimet-
als. In Section 3, we summarize the theories of the weak
anti-localization for Weyl semimetals and weak localiza-
tion for double-Weyl semimetals. We propose a formula
for the magnetoconductivity induced by the weak (anti-
)localization, which is not only applicable for topologi-
cal semimetals but also for other 3D systems. We also
show the weak localization of Weyl fermions as a result
of electron-electron interactions and inter-valley effects.
In Section 4, we review the experiments on the negative
magnetoresistance in topological semimetals, and show
the relation between the magnetic monopole and the neg-
ative magnetoresistance. In Section 5, we review our re-
sults on the magnetoconductivity in the quantum limit.
Finally, remarks and perspective are given in Section 6.

2 Effective models

2.1 Two-node model of Weyl semimetal

A minimal model for a Weyl semimetal can be written
as

H = A(kxσx + kyσy) +Mkσz, (2.1)

where σ are the Pauli matrices, Mk =M0−M1(k
2
x+k

2
y+

k2z), k = (kx, ky, kz) is the wave vector, and A, M0/1 are
model parameters. This minimal model gives a global
description of a pair of Weyl nodes of opposite chirality
and all the topological properties. It has an identical
structure as that for A-phase of 3He superfluids [79]. If
M0M1 > 0, the two bands intersect at (0, 0,±kw) with
kw ≡

√
M0/M1 (see Fig. 1), giving rise to the topological

Fig. 1 Nontrivial band structure and Berry curvature of a
topological semimetal. (a) A schematic of the energy spec-
trum of a topological semimetal. (kx, ky, kz) is the wave vec-
tor. k2

// = k2
x+k2

y. (b) The vector plot of the Berry curvature
in momentum space. The conduction and valence bands of
a topological semimetal touch at the Weyl nodes, at which a
pair of monopoles are hosted. The arrows show that the flux
of the Berry curvature flows from one monopole (red) to the
other (blue), defining the nontrivial topological properties of
a topological semimetal. Reproduced from Ref. [58].
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semimetal phase. In the topological semimetal phase, the
model can also be written as

H = A(kxσx + kyσy) +M(k2w − k2)σz, (2.2)

where A, M , kw are model parameters. The dispersions
of two energy bands of this model are

E± = ±
√

[M(k2w − k2)]2 +A2(k2x + k2y), (2.3)

which reduce to E± = ±M |k2w−k2z | at kx = ky = 0. The
two bands intersect at (0, 0,±kw) (see Fig. 1).

Around the two nodes (0, 0,±kw), H reduces to two
separate local models

H± = M± · σ, (2.4)

H± = M± · σ with M± =
(
Ak̃x, Ak̃y,∓2Mkwk̃z

)
and

(k̃x, k̃y, k̃z) the effective wave vector measured from the
Weyl nodes.

2.2 Berry curvature

The topological properties in H can be seen from the
Berry curvature [80], Ω(k) = ∇k × A(k), where the
Berry connection is defined as A(k) = i ⟨u(k)|∇k |u(k)⟩.
For example, for the energy eigenstates for the + band
|u(k)⟩ = [cos(Θ/2), sin(Θ/2)eiφ], where cosΘ ≡ Mk/E+

and tanφ ≡ ky/kx. The three-dimensional Berry curva-
ture for the two-node model can be expressed as

ΩΩΩ (k) =
A2M

E3
+

[
kzkx, kzky,

1

2

(
k2z − k2w − k2x − k2y

)]
.

(2.5)

There exist a pair of singularities at (0, 0,±kw) as shown
in Fig. 1. The chirality of a Weyl node can be found as an
integral over the Fermi surface enclosing one Weyl node
(1/2π)

∮
Ω(k) · dS(k), which yields opposite topologi-

cal charges ∓sgn(M) at ±kw, corresponding to a pair of
“magnetic monopole and antimonopole” in momentum
space.

2.3 kz-dependent Chern number

For a given kz, a Chern number can be well defined as
nc(kz) = −(1/2π)

s
dkxdkyΩ(k) · ẑ to characterize the

topological property in the kx-ky plane, and [81]

nc(kz) = −1

2
[sgn[M(k2w − k2z)] + sgn(M)]. (2.6)

The Chern number nc(kz) = −sgn(M) for −kw <
kz < kw, and nc(kz) = 0 otherwise [4]. The nonzero
Chern number corresponds to the kz-dependent edge
states (known as the Fermi arcs) according to the bulk-
boundary correspondence [82].

2.4 Fermi arcs

If there is an open boundary at y = 0, where the wave
function vanishes, the dispersion of the surface states is
finally given by [74, 79]

Earc(kx, kz) = sgn(M)Akx. (2.7)

The corresponding wavefunction is similar to that of
topological insulator surface states [83, 84]

Ψarc
kx,kz

(r) = Ceikxx+ikzz

[
sgn(M)

1

]
(eλ1y − eλ2y), (2.8)

where C is a normalization factor and λ1,2 = A/2|M | ∓√
(A/2M)2 −∆k, and ∆k = k2w − k2x − k2z . There are

Fermi arcs in two cases: (i) λ1,2 > 0, and (ii) λ1,2 =
a ∓ ib with a, b > 0 (Note that λ1 = λ2 corresponds to
a trivial case). Also in both cases (i) and (ii), we have
λ1λ2 > 0 and henceforth ∆k > 0. Therefore the solution
of Fermi surface states is restricted inside a circle defined
by k2x + k2z < k2w.

The two-node model in Eq. (2.2) provides a generic de-
scription for Weyl semimetals, including the band touch-
ing, opposite chirality, monopoles of Berry curvature,
topological charges, and Fermi arcs.

2.5 Monopole charge

As an example, we use the effective model

H = vk · σ (2.9)

to demonstrate the monopole charge hosted at the Weyl
nodes. The model is equivalent to Eq. (2.4). The spinor
wave function of the valence band can be found as

|u+(k, θ, φ)⟩ =

 sin θ
2

− cos θ
2

eiφ

 , (2.10)

where cos θ ≡ kz/k with k =
√
k2x + k2y + k2z . The Berry

connection is defined as

A ≡ −i⟨u+ |∇k|u+⟩. (2.11)

In polar coordinates, ∇k = (∂k, (1/k)∂θ, (1/k sin θ)∂φ),
we can find that

(Ak, Aθ, Aφ) =

(
0, 0,

cos2 θ
2

k sin θ

)
. (2.12)

The Berry curvature can be found as

ΩΩΩ ≡ ∇×A

=
1

k sin θ

[
∂(Aφ sin θ)

∂θ

]
êk − 1

k

∂(kAφ)

∂k
êθ

= − 1

2k2
êk. (2.13)

Hai-Zhou Lu and Shun-Qing Shen, Front. Phys. 12(3), 127201 (2017)
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The monopole charge is defind as the Berry curvature
flux threading a sphere that encloses the origin, and can
be found as

N =
1

2π

∫
Σ

dS ·ΩΩΩ

=

∫ 2π

0

dφ
∫ π

0

dθ sin θk2
(
− 1

2k2

)
= −1. (2.14)

In the other valley of opposite chirality, the Hamiltonian
can be written as H = −vk · σ, the wave function of the
valence band |u−⟩ can be obtained by letting θ → π/2−θ
and φ→ π+φ in |u+⟩, and |u−⟩ = (cos θ

2 , sin
θ
2eiφ). Fol-

lowing the same procedure, we can show that the Berry
connection is Aφ = sin2 θ

2/k sin θ, the Berry curvature is
Ωk = 1/(2k2), and the monopole charge is 1. Thus the
total monopole charge is zero for the two-node model,
which is consistent with Nielsen-Minomiya’s no-go theo-
rem [28].

2.6 Landau bands

In a magnetic field along the z direction, the energy spec-
trum is quantized into a set of 1D Landau bands dis-
persing with kz [see Fig. 2 (a)]. We consider a magnetic
field applied along the z direction, B = (0, 0, B), and
choose the Landau gauge in which the vector potential
is A = (−yB, 0, 0). The Landau bands can be solved
analytically [85–87].

The eigen energies are [72]

Eν±
kz

= ω/2±
√
M2

ν + νη2, ν ≥ 1,

E0
kz

= ω/2−M0 +M1k
2
z , ν = 0, (2.15)

where ω = 2M/ℓ2B , η =
√
2A/ℓB, and the magnetic

Fig. 2 The energies of Landau bands of the minimal global
model for Weyl and Dirac semimetals in a magnetic field B
applied along the z direction, as functions of the wave vector
kz. The parameters: M0 = 0.05 eV, M1 = 5 eV·nm2, A = 1
eV·nm, and B = 1. The Zeeman energy is not included.
Reproduced from Ref. [72].

length ℓB =
√
~/(e|B|). The Landau energy bands (ν

as band index) disperse with kz, as shown in Fig. 2. The
eigen states for ν ≥ 1 are

|ν ≥ 1, kx, kz,+⟩ =

 cos
θνkz

2
|ν − 1⟩

sin
θνkz

2
|ν⟩

 |kx, kz⟩,

|ν ≥ 1, kx, kz,−⟩ =

 sin
θνkz

2
|ν − 1⟩

− cos
θνkz

2
|ν⟩

 |kx, kz⟩, (2.16)

and for ν = 0 is

|ν = 0, kx, kz⟩ =
[

0
|0⟩

]
|kx, kz⟩, (2.17)

where cos θνkz
= Mν/

√
M2

ν + νη2, and the wave func-
tions ψν,kz,kx(r) = ⟨r|ν, kx, kz⟩ are found as

ψν,kz,kx(r)=
Cν√

LxLzℓB
eikzzeikxxe

− (y−y0)2

2ℓ2
B Hν

(
y − y0
ℓB

)
,

(2.18)
where Cν ≡ 1/

√
ν!2ν

√
π, LxLz is area of sample, the

guiding center y0 = kxℓ
2
B , Hν are the Hermite polyno-

mials. As the dispersions are not explicit functions of kx,
the number of different kx represents the Landau degen-
eracy NL = 1/(2πℓ2B) = eB/h in a unit area in the x-y
plane. This set of analytical solutions provides us a good
base to study the transport properties of Weyl fermions.

2.7 Paramagnetic topological semimetals

A Weyl semimetal and its time-reversal partner can form
a Dirac semimetal or paramagnetic semimetal, whose
model can be built by H(k) in Eq. (2.2) and its time-
reversal partner H∗(−k), where the asterisk refers to
a complex conjugate. This model can also serve as a
building block for Weyl semimetals that respect time-
reversal symmetry but break inversion symmetry [23–
26, 62, 63, 88–90]. For this case, there is the quantum
spin Hall effect, compared to the quantum anomalous
Hall effect in a Weyl semimetal of a single pair of nodes.
A straightforward extension is as follows [74]
HDirac = A(kxαx + kyαy) +M(k2w − k2)β, (2.19)

where the Dirac matrices are αx = σx ⊗ σx, αy = σx ⊗
σy, β = σz ⊗ σ0. It contains four Weyl nodes, which
are doubly degenerate. The surface electrons around the
ẑ direction consist of two branches with opposite spins
and opposite effective velocities. The model can also be
written into a block-diagonalized form by changing the
basis (1 → 1, 4 → 2, 2 → 3, 3 → 4),

HDirac =

[
H(k) 0

0 H∗(−k)

]
+ σz ⊗

[
∆s 0

0 ∆p

]
. (2.20)

127201-4
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In the second term, the z-direction Zeeman energy
∆s/p = gs/pµBB/2 is also included, where gs/p is the
g-factor for the s/p orbital [12] and µB is the Bohr mag-
neton.

Figure 2(b) shows the Landau bands of both H(k) and
H∗(−k) in the z-direction magnetic field. The Landau
bands of the Dirac semimetal can be found in a similar
way as that in Section 2.6. Now there are two branches
of ν = 0 bands, with the energy dispersions E0↑

kz
=

ω/2+∆p−M0+M1k
2
z and E0↓

kz
= −ω/2−∆s+M0−M1k

2
z

for H(k) and H∗(−k), respectively. They intersect
at kz = ±

√
[M0 − (ω +∆s +∆p)/2]/M1 and energy

(∆p − ∆s)/2, and with opposite Fermi velocities near
the points.

2.8 Double-Weyl semimetal

Each Weyl node in a Weyl semimetal hosts a monopole
charge of 1 or −1. In a double-Weyl semimetal, the
monopole charge is 2 or −2 [6, 91–93]. For a single valley
of both single- and double-Weyl semimetals, the minimal
model can be written as

H =

[
χvz~kz v//(~k+)N

v//(~k−)N −χvz~kz

]
, (2.21)

where k± = kx ± iky, χ = ±1 is the valley index, vz
and v// are parameters and assumed to be constants,
and momentum k is measured from the Weyl nodes.
Here, N = 1, 2 correspond to single- and double-Weyl
semimetal respectively. The model has a conduction
band and a valence band, with the dispersions given by
±Ek and Ek =

√
v2z~2k2z + v2//(~2k2x + ~2k2y)N . Without

loss of generality, we assume that the chemical poten-
tial is slightly above the Weyl nodes and the electronic
transport is contributed mainly by the conduction bands
throughout the paper. The eigenstate of the conduction
band at valley χ = + is given by

|k⟩ =

[
cos(θ/2)

sin(θ/2) exp(−iNφ)

]
, (2.22)

where cos θ ≡ vzkz/Ek, and tanφ ≡ ky/kx. The eigen-
state of the conduction band around valley χ = − can be
found by replacing cos(θ/2) → sin(θ/2) and sin(θ/2) →
− cos(θ/2) in Eq. (2.22). The monopole charge can be
found by integrating the Berry curvature over an arbi-
trary Fermi sphere Σ that encloses the Weyl node,

1

2π

∫
Σ

dS ·ΩΩΩ = ±N , (2.23)

with ± for the ± valleys, the Berry curvature [80]
ΩΩΩ = ∇ × A, and A = (Aθ, Aφ) is the Berry connec-
tion given by Aθ = ⟨k|i∂θ|k⟩ = 0 and Aφ = ⟨k|i∂φ|k⟩ =
N sin2(θ/2).

3 Near zero field: Weak anti-localization

Weak anti-localization is a transport phenomenon in dis-
ordered metals [94]. At low temperatures, when the mean
free path is much shorter than the system size and phase
coherence length, electrons suffer from scattering but can
maintain their phase coherence. In this quantum dif-
fusive regime, the quantum interference between time-
reversed scattering loops can give rise to a correction
to the conductivity. If the quantum interference correc-
tion is positive, it gives a weak anti-localization correc-
tion to the conductivity. Because this correction requires
time reversal symmetry, it can be suppressed by apply-
ing a magnetic field, leading to a negative magnetocon-
ductivity, or positive magnetoresistivity, as the signature
for the weak anti-localization. The weak anti-localization
has been widely observed in topological semimetals, in-
cluding Bi0.97Sb0.03 [43, 44], ZrTe5 [45], Na3Bi [48],
Cd3As2 [57, 58], TaAs [62, 63], etc.

3.1 Symmetry argument

In contrast, the quantum interference can be negative,
leading to the weak localization effect and totally oppo-
site temperate and magnetic dependencies of conductiv-
ity. Whether one has weak localization or weak anti-
localization depends on the symmetry (see Table 1). Ac-
cording to the classification of the ensembles of random
matrix [95], there are three symmetry classes. If a sys-
tem has time-reversal symmetry but no spin-rotational
symmetry, it is in the symplectic class, in which the
weak anti-localization is expected [96]. Remember that
one of the low-energy descriptions of Weyl fermions in
semimetals is H = ±~vFσ · k, which respects time-
reversal symmetry not spin rotational symmetry. There-
fore, a single valley of Weyl fermions has the symplec-
tic symmetry and the weak anti-localization. Moreover,
we find the Berry phase can also explain the weak lo-
calization in Weyl semimetals [73], which we discuss
later.

Table 1 The relation between the symmetry classes (or-
thogonal, symplectic, and unitary) [95] and weak localization
(WL) and anti-localization (WAL) [96]. Reproduced from
Ref. [77].

Orthogonal Symplectic Unitary

Time-reversal √ √
×

Spin-rotational √
× ×

WL/WAL WL WAL ×

Hai-Zhou Lu and Shun-Qing Shen, Front. Phys. 12(3), 127201 (2017)
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3.2 Feynman diagram calculations

One of the theoretical approaches to study the weak lo-
calization and anti-localization is the Feynman diagram
techniques. Figure 3 summarizes the Feynman diagrams
used to study the weak localization and anti-localization
arising from the quantum interference and interaction
[71]. It is based on the linear response theory of the con-
ductivity, with disorder and interaction taken as pertur-
bations. In the formulism, there are three main contribu-
tions to the conductivity. The leading order is the semi-
classical Drude conductivity [Fig. 3(a)], then the quan-
tum interference correction [Fig. 3(b)] and interaction
correction (Altshuler-Aronov effect) [Fig. 3(d)].

We calculate the magnetoconductivity arising from
the quantum interference δσqi, as shown in Fig. 4. As
B → 0, δσqi is proportional to −

√
B for ℓϕ ≫ ℓB or at

low temperatures, and δσqi ∝ −B2 for ℓϕ ≪ ℓB or at
high temperatures. ℓB can be evaluated approximately
as 12.8 nm/

√
B with B in Tesla. Usually below the liq-

uid helium temperature, ℓϕ can be as long as hundreds
of nanometers to one micrometer, much longer than ℓB
which is tens of nanometers between 0.1 and 1 Tesla.
Therefore, the −

√
B magnetoconductivity at low tem-

peratures and small fields serves as a signature for the
weak anti-localization of 3D Weyl fermions. Figure 4(a)
shows δσqi(B) of two valleys of Weyl fermions in the
absence of intervalley scattering. For long ℓϕ, δσqi(B)

is negative and proportional to
√
B, showing the signa-

ture of the weak anti-localization of 3D Weyl fermions.
This −

√
B dependence agrees well with the experiment,

[43, 44] and we emphasize that it is obtained from a
complete diagram calculation with only two parameters
ℓ and ℓϕ of physical meanings. As ℓϕ becomes shorter,
a change from −

√
B to −B2 is evident, and eventually

Fig. 3 The Feynman diagrams [94, 97–102] for the con-
ductivity of 3D Weyl semimetals, in the presence of disorder
(dashed lines) and electron-electron interaction (wavy lines).
The arrow lines are for Green’s functions. Reproduced from
Ref. [71].

Fig. 4 The magnetoconductivity δσqi(B) for different
phase coherence length ℓϕ at ηI = η∗ = 0 (a), for differ-
ent ηI at η∗ = 0 (b), and for different ηI at finite η∗ (c).
The magnetic field B is applied along arbitrary directions.
Parameters: ℓ = 10 nm and ℓϕ = 1000 nm in (b) and (c).
(d) The diagrams show the difference between ηI and η∗,
with ηI related to the intervalley scattering and η∗ measur-
ing the intervalley correlation of intravalley scattering. The
dashed lines represent the correlation of two scattering pro-
cesses. ν = ± is the valley index. Reproduced from Ref. [71].

δqi(B) vanishes at ℓϕ = ℓ as the system is no longer in the
quantum interference regime and enters the semiclassical
diffusion regime.

3.3 Weak localization of double-Weyl semimetal

We focus on the Fermi sphere in one valley of a topo-
logical semimetal. For each path [labelled as P in
Fig. 5(a)] connecting successive intermediate states of
the backscattering from k to −k on the Fermi sphere,
which encompasses the monopole charge at the origin,
there exists a corresponding time-reversal counterpart
P ′. The quantum interference is determined by the phase
difference between the two time-reversed paths P and
P ′, which is equivalent to the Berry phase accumulated
along the loop formed by P together with P̄ ≡ −P ′,
namely the corresponding path from −k to k, as shown
in Fig. 5(b).

The quantum interference correction then depends on
the geometric phase, i.e., the Berry phase [80, 97, 103–
106], collected by electrons after circulating the loop C ≡
P+P̄ . The Berry phase can be found by a loop integral of
the Berry connection around C. Remarkably, this Berry
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Fig. 5 The Fermi sphere in momentum space for a three-
dimensional topological semimetal, where the dot located at
the origin represents a monopole charge of N . (a) P denotes
a generic backscattering from the wave vector k to −k via
intermediate states labeled as (k1,k2, . . . ,kn). P ′ stands for
the time-reversal counterpart of P . (b) The phase difference
between P and P ′ is equivalent to the Berry phase circulating
around the loop C = P + P̄ . Reproduced from Ref. [73].

phase depends only on the monopole charge, but not on
the specific shape of the loop [73]

γ =

∮
C

dℓ ·A = πN . (3.1)

For double-Weyl semimetals, the monopole charge N =
2 and the Berry phase is then 2π. With the 2π Berry
phase, the time-reversed scattering loops interfere con-
structively, leading to the weak localization effect. How-
ever, for single-Weyl semimetals, the monopole charge
is N = 1 and the Berry phase is π, which gives rise to
the weak anti-localization effect. As the Berry phase is a
consequence of the Berry curvature field generated by the
monopole charge, we therefore establish a robust connec-
tion between the weak (anti)localization effect with the
parity of monopole charge N . The Berry phase argument
is consistent with the symmetry classification [107], the
single-Weyl semimetals belong to the symplectic class
with a weak anti-localization correction, while double-
Weyl semimetals correspond to the orthogonal class with
a weak localization correction.

We now verify the above argument of quantum inter-
ference correction to conductivity in Weyl semimetals by
the standard Feynman diagram calculations. The cor-
rection can be evaluated by calculating the maximally
crossed diagrams, one of which is shown in Fig. 6. In
this diagram, the segments of the arrow lines represent
the intermediate states in the backscattering, and the
dashed lines represent the correlation between the time-
reversed scattering processes. The core calculation of the
maximally crossed diagrams can be formulated into the
particle-particle correlation, known as the cooperon. The
cooperon of the double-Weyl semimetal is found to be
[73]

Γk1,k2 ≈ ~
2πNF τ2

ei2(φ2−φ1)

D1

(
q2x + q2y

)
+D2q2z

, (3.2)

where q = k1 + k2 is the cooperon wave vector, k1 and
k2 are the wave vectors of incoming and outgoing states,
respectively, φ1 and φ2 are the azimuth angles of corre-
sponding wave vectors, D1 = 8τEF v///3π and D2 = τv2z
are the diffusion coefficients, NF is the density of states,
and τ is the momentum relaxation time. In contrast, the
cooperon of the single-Weyl semimetal is known to take
the form [71]

Γk1,k2 ≈ ~
2πNF τ2

1

Dq2
ei(φ2−φ1), (3.3)

where the diffusion coefficient D = v2F τ/2 (We only
give the result for isotropic single-Weyl semimetals with
vF = vz = v//; this simplification does not change any
qualitative results with respect to quantum interference
correction). Note the main difference between Eqs. (3.2)
and (3.3) lies in the phase factor involving φ2−φ1, which
originates from different eigenstates of Weyl semimetals
with different monopole charges.

As q → 0, i.e., k1 = −k2, the cooperon becomes di-
vergent and becomes the most dominant contribution
to the backscattering. In this limit, φ2 = φ1 + π (We
have carried out a coordinate transformation in deriv-
ing these results, where ~kx =

√
k sin θ cosφ, ~ky =√

k sin θ sinφ, 2~mvkz = k cos θ, −k is obtained by set-
ting φ → φ + π and θ → π − θ). Then, for the double-
Weyl semimetal,

Γk,q−k ≈ +
~

2πNF τ2
1

D1

(
q2x + q2y

)
+D2q2z

, (3.4)

and for the single-Weyl semimetal,

Γk,q−k ≈ − ~
2πNF τ2

1

Dq2
. (3.5)

Note the different signs in Eqs. (3.4) and (3.5), which cor-
respond to the WL and WAL effects, respectively. This
is a direct consequence of different phase factors in the

Fig. 6 The maximally crossed Feynman diagram that de-
scribes the quantum interference between the time-reversed
scattering trajectories in Fig. 5 as q → 0. The arrowed
solid and dashed lines denote the Green functions and im-
purity scattering, respectively. This kind of diagrams can
give the quantum interference correction to the conductiv-
ity [96, 97, 105]. A negative (positive) correction corresponds
to the weak (anti)localization effect, with the sign sensitive to
the parity of the monopole charge. Reproduced from Ref. [73].
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wavefunctions, generated by different monopole charges
in double- and single-Weyl semimetals. In other words,
a connection is therefore firmly established between the
parity of monopole charge N and the sign of the quan-
tum interference correction, with odd and even parity
giving rise to WAL and WL, respectively.

The weak localization effect can give rise to a positive
magnetoconductivity as another signature of the weak lo-
calization in double-Weyl semimetals. The magnetocon-
ductivity is anisotropic, depending on whether the field
is along the z direction or in the x−y plane. The magne-
toconductivity is defined as δσqi

zz(B) = σqi
zz(B)− σqi

zz(0).
In the limit of ℓϕ ≫ ℓB ≫ ℓz, which can be ap-
proached at low temperatures, the magnetoconductivity
δσqi

zz(B) ∝
√
B. In the limit of ℓB ≫ ℓϕ and ℓB ≫ ℓz,

δσqi
zz(B) ∝ B2.

3.4 Magnetoconductivity formula for WAL/WL in 3D

Based on our theoretical results in Refs. [71] and [73],
we proposed a formula to fit the magnetoconductivity
arising from the weak (anti-)localization in three dimen-
sions,

δσqi
zz = Cqi

1

B2
√
B

B2
c +B2

+ Cqi
2

B2
cB

2

B2
c +B2

, (3.6)

where the fitting parameters Cqi
1 and Cqi

2 are positive for
weak localization and negative for weak anti-localization.
The critical field Bc is related to the phase coherence
length ℓϕ according to Bc ∼ ~/(eℓ2ϕ). Empirically, the
phase coherence length becomes longer with decreasing
temperature and can be written as ℓϕ ∼ T−p/2; then
Bc ∼ T p, where p is positive and determined by deco-
herence mechanisms such as electron-electron interaction
(p = 3/2) or electron-phonon interaction (p = 3). At
high temperatures, ℓϕ → 0; thus, Bc → ∞ and we have
δσqi

zz ∝ B2. At low temperatures, ℓϕ → ∞; then Bc = 0

and we have δσqi
zz ∝

√
B. The formula has been applied

in the experiment on TaAs, and by fitting the magneto-
conductivity, we find that p ≈ 1.5 [63].

3.5 Localization induced by interaction and inter-valley
effects

In the presence of the interaction, we find that the change
of conductivity with temperature for one valley of Weyl
fermions can be summarized as

∆σ(T ) = ceeT
1/2 − cqiT

p/2, (3.7)

where both cee and cqi are positive parameters. This
describes a competition between the interaction-induced
weak localization and interference-induced weak anti-
localization, as shown in Fig. 7 schematically. At higher
temperatures, the conductivity increases with decreasing

Fig. 7 A schematic demonstration of the change of con-
ductivity ∆σ as a function of temperature T . We choose
cee = cqi. Tc is the critical temperature below which the con-
ductivity drops with decreasing temperature. Reproduced
from Ref. [71].

temperature, showing a weak anti-localization behavior.
Below a critical temperature Tc, the conductivity starts
to drop with decreasing temperature, exhibiting a local-
ization tendency. The critical temperature can be found
as Tc = (cee/p · cqi)2/(p−1). Because cee, cqi > 0, this
means as long as p > 1, there is always a critical temper-
ature, below which the conductivity drops with decreas-
ing temperature. For known decoherence mechanisms in
3D, p is always greater than 1 [94]. With a set of typical
parameters, we find that Tc ≈ 0.4− 106 K [71].

We find that the intervalley scattering and correlation
can also lead to the weak localization. Two dimensionless
parameters are defined for the inter- and intravalley scat-
tering: η∗ ∝ ⟨U++

k,k′U
−−
k′,k⟩ measuring the correlation be-

tween intravalley scattering and ηI ∝ ⟨U+−
k,k′U

−+
k′,k⟩ mea-

suring the weight of intervalley scattering , where Uν,ν′

k,k′

is the scattering matrix element. Figure 4(d) schemati-
cally shows the difference between η∗ and ηI . As shown
in Fig. 4(b), with increasing ηI , the negative δσqi is sup-
pressed, where ηI → 1 means strong intervalley scatter-
ing while ηI → 0 means vanishing intervalley scattering.
Furthermore, Fig. 4(c) shows that the magnetoconduc-
tivity can turn to positive when ηI + η∗ = 3/2. The
positive δσqi(B) in Fig. 4(c) corresponds to a suppressed
σqi with decreasing temperature, i.e., a localization ten-
dency. This localization is attributed to the strong inter-
valley coupling which recovers spin-rotational symmetry
(now the spin space is complete for a given momentum),
then the system goes to the orthogonal class [95, 96, 106].
Therefore, we show that the combination of strong inter-
valley scattering and correlation will strengthen the lo-
calization tendency in disordered Weyl semimetals. The
metal-insulator phase transition is also found numeri-
cally [41].
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4 Weak magnetic fields: Negative
magnetoresistance

In a topological semimetal, paired Weyl nodes carry
opposite chirality and paired monopoles and anti-
monopoles of Berry curvature in momentum space [2]
[see 1(b)]. The nontrivial Berry curvature can cou-
ple an external magnetic field to the velocity of elec-
trons, leading to a chiral current that is linearly propor-
tional to the field. The correlation of chiral currents fur-
ther contributes to an extra conductivity that quadrati-
cally grows with increasing magnetic field, in a magnetic
field and an electric field applied parallel to each other
[30, 31]. This B2 positive conductivity in weak parallel
magnetic fields, or negative magnetoresistance (negative
MR), is rare in non-ferromagnetic materials, thus can
serve as one of the transport signatures of the topolog-
ical semimetals. More importantly, because of its rela-
tion to the chiral charge pumping between paired Weyl
nodes, the negative magnetoresistance is also believed to
be a signature of the chiral anomaly [28, 108, 109]. The
negative magnetoresistance has been observed in topo-
logical insulator thin films [110] and many topological
semimetals, including BiSb alloy [43, 44], ZrTe5 [45],
TaAs [62, 63], Na3Bi [48], Cd3As2 [57–59], TaP [65],
NbAs [67, 68], and HfTe5 [70].

To understand the negative magnetoresistance, we
start with the semiclassical equation of motion proposed
by Niu and his colleagues [80, 111–113]

ṙ = v + k̇ ×ΩΩΩk,

~k̇ = eE + eṙ ×B, (4.1)

where v = ∂ϵk/~∂k. The second term in the first equa-
tion indicates that an electron can acquire an anomalous
velocity proportional to the Berry curvature of the band
in the presence of an electric field. This anomalous veloc-
ity is responsible for a number of transport phenomena.

Iterating k and r in the equations, using (a×b)×c =
(a · c)b− (b · c)a, and (ȧ× b) · b = 0, we arrive at [30]

ṙ =
(
1 +

e

~
B ·ΩΩΩk

)−1[
v +

e

~
E ×ΩΩΩk +

e

~
(ΩΩΩk · v)B

]
,

~k̇ =

(
1 +

1

~
B ·ΩΩΩk

)−1[
eE + ev×B+

e2

~
(E ·B)ΩΩΩk

]
,

(4.2)

where E×ΩΩΩk gives AHE [114, 115], (ΩΩΩk ·v)B gives the
chiral magnetic effect [38], and (E ·B)ΩΩΩk is the source
of the negative magnetoresistance [30, 31].

Now we give an argument for the negative magnetore-
sistance. The argument is similar to the calculation by
Yip [116]. In the framework of linear response theory,

E = 0, the velocity in small B fields reduces to

ṙ = v +
e

~
(ΩΩΩk · v)B, (4.3)

where we have considered the correction of the density
of states by the Berry curvature. The second term repre-
sents the anomalous velocity induced by the finite Berry
curvature and is proportional to the magnetic field. Be-
cause the conductivity is a current-current correlation
[see Fig. 3(a)], the linear-B dependence in the veloc-
ity (note that current is charge times velocity) leads
to the quadratic-B dependence in the conductivity. In
Sec. 2.5, we have shown that the Berry curvature is pro-
portional to 1/k2. Considering there are Ω2 and a k2 in
the 3D integral of the conductivity formula, eventually,
the anomalous conductivity part should be inversely pro-
portional to the Fermi wave vector and proportional to
B2, that is

δσ(B) ∝ B2

k2F
. (4.4)

The functional relation obtained by this argument is con-
sistent with the formulas obtained by Son and Spivak [30]
and Burkov [31]. The conductivity increases with B2,
giving rise to a negative magnetoresistance. Because the
nontrivial Berry curvature diverges at the Weyl nodes,
the positive conductivity will increase with decreasing
Fermi wave vector and carrier density. In three dimen-
sions, the carrier density n is proportional to k3F , so

δσ(B) ∝ B2

n2/3
. (4.5)

Therefore, it is necessary to check three properties in
order to verify a negative magnetoresistance from the
nontrivial Berry curvature. (i) The angular dependence.
Because of the E ·B term in Eq. (4.2), the effect is max-
imized when the electric field is aligned with the mag-
netic field. Also, when the field is perpendicular to the
current, the positive magnetoresistance from the Lorentz
force can easily overwhelm the Berry-curvature negative
magnetoresistance. (ii) The B2 magnetic field depen-
dence. (iii) The n−2/3 carrier density dependence. So
far, the first two properties have been verified by all the
experiments in which the negative magnetoresistance is
observed. In the experiment by Li et al. on a nanorib-
bon of Cd3As2 [58], the carriers can be released by de-
fects with increasing temperature, following an Arrhe-
nius’s law. The carrier density was extracted from two
formulas. One is Kohler’s rule R(B⊥) = R0[1+(µB⊥)

2],
where R(B⊥) and R0 are the resistance in the presence
and absence of a perpendicular magnetic field B⊥, and
µ is the mobility. This can give a rough estimate of the
mobility µ, which is then put into the zero-field resis-
tivity ρ = 1/neµ to yield the carrier density n approx-
imately. In a temperature window between 50K and
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150K, the weak anti-localization does not play a role,
and the change in the negative magnetoresistance can
be assumed to be mainly from the change of the carrier
density because it is a semiclassical conductivity contri-
bution. The experiment shows that the coefficient in
front of the negative magnetoresistance can be well fit-
ted by B2/n2/3. In the experiment by Zhang et al. [63],
the carrier density dependence was checked by compar-
ing the results from different samples.

5 Strong magnetic fields: The quantum limit

5.1 Argument of negative magnetoresistance in the
quantum limit

According to Nielsen and Ninomiya [29], the original pro-
posal for realizing the chiral anomaly in lattices is in the
quantum limit of a 3D semimetal. They started with a
one-dimensional model in which two chiral energy bands
have linear dispersions and opposite velocities. An exter-
nal electric field can accelerate electrons in one band to
higher energy levels, in this way, charges are “created”.
In contrast, in the other band, which has the opposite
velocity, charges are annihilated. The chiral charge, de-
fined as the difference between the charges in the two
bands, therefore is not conserved in the electric field.
This is literally the chiral anomaly. As one of the pos-
sible realizations of the one-dimensional chiral system,
they then proposed to use the ν = 0 Landau bands of
a three-dimensional semimetal, and expected “the longi-
tudinal magneto-conduction becomes extremely strong”.
In other words, the magnetoresistance of the 0th Lan-
dau bands in semimetals is the first physical quantity
that was proposed as one of the signatures of the chiral
anomaly.

In the quantum limit, only the band of ν = 0 is par-
tially filled. In this case the transport properties of the
system are dominantly determined by the highly degen-
erate ν = 0 Landau bands [the red curve in Fig. 2(a)].
It is reasonable to regard them as a bundle of one-
dimensional chains. Combining the Landau degeneracy
NL, the z-direction conductance is approximately given
by

σzz = NLσ1D, (5.1)

where σ1D is the conductance for each one-dimensional
Landau band.

If we ignore the scattering between the states in the de-
generate Landau bands, according to the transport the-
ory, the ballistic conductance of a one-dimensional chain
in the clean limit is given by

σ1D =
e2

h
, (5.2)

then the conductivity is found as

σzz =
e2

h

eB

h
, (5.3)

which is is linear in magnetic field B, giving a positive
magnetoconductivity.

In most measurements, the sample size is much larger
than the mean free path, then the scattering between the
states in the Landau bands is inevitable, and we have to
consider the other limit, i.e., the diffusive limit. Usually,
the scattering is characterized by a transport time τ .
According to the Einstein relation, the conductivity of
each Landau band in the diffusive limit is

σ1D = e2N1Dv
2
F τ, (5.4)

where vF the Fermi velocity and the density of states for
each 1D Landau band is N1D = 1/π~vF , then

σzz =
e2

h

eBvF τ

π~
. (5.5)

If vF and τ are constant, one readily concludes that the
magnetoconductivity is positive and linear in B.

Recently, several theoretical works have formulated
the negative magnetoresistance or positive magnetocon-
ductivity in the quantum limit as one of the signatures
of the chiral anomaly [30, 117], much similar to those in
Eqs. (5.3) and (5.5). In both cases, the positive mag-
netoconductivity arises because the Landau degeneracy
increases linearly with B. However, in the following, we
will show that if vF and τ also depend on the magnetic
field, the conclusion has to be reexamined.

5.2 Disorder scattering

One of the convenient choices is the random Gaussian
potential

U(r) =
∑
i

ui

(d
√
2π)3

e−|r−Ri|2/2d2

, (5.6)

where ui measures the scattering strength of a randomly
distributed impurity at Ri, and d is a parameter that
determines the range of the scattering potential. The
Gaussian potential allows us to study the effect of the
potential range in a controllable way, which we find it
crucial in the present study. Now we have two charac-
teristic lengths, the potential range d and the magnetic
length ℓB , which define two regimes, the long-range po-
tential regime d≫ ℓB and the short-range potential limit
d ≪ ℓB . Note that, for a given d in realistic materials,
varying the magnetic field alone can cross between the
two regimes. Empirically, the magnetic length ℓB = 25.6
nm/

√
|B| with B in Tesla. In the strong-field limit, e.g.,

B > 10 T, the magnetic length ℓB becomes less than
10 nm, it is reasonable to regard smooth fluctuations in
materials as long-range.
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For the scattering among the states on the Fermi sur-
face of the 0th Landau bands, the transport time can be
found as

~
τ0,tr
kF

= 2π
∑
k′
x,k

′
z

⟨|U0,0
kx,kF ;k′

x,k
′
z
|2⟩δ(EF − E0

k′
z
)

×
(
1−

vz0,k′
z

vF

)
, (5.7)

where U0,0
kx,kF ;k′

x,k
′
z

represents the scattering matrix el-
ements calculated from Eq. (5.6) and ⟨. . .⟩ means the
impurity average [74].

5.3 Negative magnetoconductivity with delta potential

The delta potential means d → 0 in Eq. (5.6). In this
case, the transport time is the same as the scattering
time [72]. By considering the magnetic field dependence
of the scattering time, we find that in the strong-field
limit (B → ∞),

τ =
~2v0Fπℓ2B
Vimp

. (5.8)

Here we suppress the correction Λ , because it cancels in
σzz [72]. The scattering time can be put into Eq. (5.5)
to give the conductivity in the strong-field limit as

σsc
zz,0 =

e2

h

(~v0F )2

Vimp
. (5.9)

Notice that the Landau degeneracy in the scattering
time cancels with that in Eq. (5.5), thus the magnetic
field dependence of σsc

zz,0 is given by the Fermi velocity
v0F . When ignoring the magnetic field dependence of the
Fermi velocity, a B-independent conductivity was con-
cluded, which is consistent with the previous work in
which the velocity is constant [118]. We find the mag-
netic field dependence of the Fermi velocity can lead to
different scenarios of positive and negative magnetocon-
ductivity.

(i) Weyl semimetal with fixed carrier density. In a
strong field the Fermi velocity or the Fermi energy is
given by the density of charge carriers and the magnetic
field [119]. We assume that an ideal Weyl semimetal is
the case that the Fermi energy crosses the Weyl nodes,
all negative bands are fully filled and the positive bands
are empty. In this case ~v0F = 2M1kw. An extra doping
of charge carriers will cause a change of electron den-
sity n0(> 0) in the electron-doped case or hole density
n0(< 0) in the hole-doped case. The relation between
the Fermi wave vector and the density of charge carriers
is given by

n0 = 2NL × k0F − kw
2π

. (5.10)

This means that the Fermi wave vector is determined by
the density of charge carriers n0 and magnetic field B,

k0F = kw + πn0h/eB (5.11)

or k0F = kw + 2π2n0ℓ
2
B . Thus the Fermi velocity is also

a function of B, ~v0F = 2M1k
0
F , and

σsc
zz,0 = σN

[
1 + sgn(n0)

Bc

B

]2
. (5.12)

where the characteristic field Bc = π |n0|h/ekw. A typ-
ical order of Bc is about 10 Tesla for n0 of 1017/cm3.
σsc
zz,0 is constant for the undoped case of n0 = 0, and

σN =
e2

h

4M2
1 k

2
w

Vimp
(5.13)

is the conductivity of the undoped case, and is indepen-
dent of magnetic field. Thus the magnetoconductivity is
always negative in the electron-doped case while always
positive in the hole-doped regime.

(ii) Weyl semimetal with fixed Fermi energy. In the
case that the Fermi energy is fixed, (~v0F )2 = 4M1(EF −
eM1B/~+M0), and we have

σsc
zz,0 =

e2

h

4M1(EF − eM1B/~+M0)

Vimp
, (5.14)

then the magnetoconductivity is always negative and lin-
ear in B.

(iii) Paramagnetic semimetal. For the Dirac semimetal
or paramagnetic semimetal described by Eq. (2.20), there
are two branches of ν = 0 bands, with the energy dis-
persions E0↑

kz
= ω/2 + ∆p − M0 + M1k

2
z and E0↓

kz
=

−ω/2 − ∆s + M0 − M1k
2
z for H(k) and H∗(−k), re-

spectively. In the absence of inter-block velocity, the
longitudinal conductance along the z direction is approx-
imately a summation of those for two independent Weyl
semimetals. First, we consider the Fermi energy cross
both bands 0 ↑ and 0 ↓. Using Eq. (5.14), the z-direction
conductivity is found as

σsc
zz,0 = σsc

zz,0↑ + σsc
zz,0↓

=
e2

h

8M1

Vimp

[
M0−

eM1B

~
−µB(gp + gs)B

4

]
, (5.15)

or using σN defined in Eq. (5.13),

σsc
zz,0 = 2σN

[
1− eB

~k2w
− µB(gp + gs)B

4M0

]
. (5.16)

In this case we have a negative linear B magnetoconduc-
tivity, when the Fermi energy crosses both E0↑

kz
and E0↓

kz
.

With increasing magnetic field, the 0 ↑ bands will shift
upwards and the 0 ↓ bands will shift downwards. Be-
yond a critical field, the Fermi energy will fall into either
0 ↑ or 0 ↓ bands, depending on whether the carriers are
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electron-type or hole-type. If the carrier density is fixed,
the Fermi wave vector in this case does not depend on
kw as that in Eq. (5.11), but

k0F =
πn0h

eB
(5.17)

or k0F = 2π2n0ℓ
2
B. In this case, with increasing magnetic

field, the Fermi energy will approach the band edge and
the Fermi velocity always decreases. Using Eq. (5.9),

σsc
zz,0 =

e2

h

4π2h2M2
1n

2
0

Vimpe2B2
, (5.18)

which also gives negative magnetoconductivity that is
independent on the type of carriers. Note that in the
Weyl semimetal TaAs with broken inversion symmetry,
where the Weyl nodes always come in even pairs because
of time-reversal symmetry [23–26], the situation is more
similar to that for the Dirac semimetal and the magneto-
conductivity does not depend on the type of carriers and
may be described by a generalized version of Eqs. (5.16)
and (5.18).

5.4 Positive linear magnetoconductivity and zero-field
minimum conductivity at half filling of a Weyl
semimetal

With the random Gaussian potential, we can find the
transport time as well as the conductivity. In particular,
at the Weyl nodes the transport time is obtained as [74]

~
τ0,tr
kw

=
Vimp

2πMkw

e−4d2k2
w

2d2 + ℓ2B
, (5.19)

and hence the longitudinal conductivity

σzz(B) =
e2

h

(2Mkw)
2(2d2 + ℓ2B)

Vimpℓ2B
e4d

2k2
w , (5.20)

where Vimp ≡
∑

i u
2
i /V measures the strength of the

scattering and V = LxLyLz is the volume of the sys-
tem. Lx,y,z are the sizes of the system along the x̂, ŷ
and ẑ directions, respectively. This conductivity is gen-
erated by the inter-node scattering with a momentum
transfer of 2kw. As the magnetic field goes to zero, the
magnetic length diverges and d/ℓB → 0, and Eq. (5.20)
gives a minimum conductivity

σzz(0) =
e2

h

4(Mkw)
2

Vimp
e4d

2k2
w , (5.21)

even though the DOS vanishes at the Weyl nodes at zero
magnetic field. A similar result was found in the absence
of the Landau levels [120].

According to d, we have two cases. (i) In the short-
range limit, d = 0, then σzz does not depend on the
magnetic field, giving a zero magnetoconductivity, which

recovers the result for the delta potential [72, 121]. (ii)
As long as the potential range is finite, i.e., d > 0, we
can have a magnetoconductivity. Using Eq. (5.20),

∆σzz(B) ≡ σzz(B)− σzz(0)

σzz(0)
=

B

B0
, (5.22)

where B0 = ~/(2ed2). Thus the magnetoconductivity is
given by the range of impurity potential, and indepen-
dent of the model parameters. This means that we have
a positive linear ẑ-direction magnetoconductivity for the
Weyl semimetal. A finite carrier density n0 can drive the
system away from the Weyl nodes, then kw in Eq. (5.20)
is to be replaced by kF = kw + sgn(M)2π2ℓ2Bn0. The
finite n0 can vary the linear-B dependence, but a strong
magnetic field can always squeeze the Fermi energy to
kw, and recover the linear magnetoconductivity.

A linear-B magnetoconductivity arising from the Lan-
dau degeneracy has been obtained before [30, 117], based
on the assumption that the transport time and Fermi
velocity are constant. However, in the present case, we
have taken into account the magnetic field dependence of
the transport time, and thus the B-linear magnetocon-
ductivity here has a different mechanism as a result of the
interplay of the Landau degeneracy and impurity scat-
tering. Also, in the presence of the charged impurities,
a B2 magnetoconductivity can be found in the quantum
limit [121]. A B2 magnetoconductivity can also be found
in the semiclassical limit [30, 31]. Numerically, a positive
magnetoconductivity is also found for the long-range dis-
order, although the system tends to have negative mag-
netoconductivity for the weak short-range disorder [42].

5.5 Transverse magnetoconductivity

When electric and magnetic fields are perpendicular to
each other, the changing rate of density of charge car-
riers near each node vanishes. In this case, because the
Landau bands in the ẑ-direction magnetic field only dis-
perse with kz, the effective velocity along the x̂ direction
vx = ∂E0/(~∂kx) = 0. The leading-order x̂-direction
conductivity arises from the inter-band velocity and the
scatterings between the 0th bands with the bands of 1±,
which are higher-order perturbation processes. Thus the
transverse conductivity is usually much smaller than the
longitudinal conductivity.

There are three cases as shown in Figs. 8(d)–(f). At
d = 0, σxx reduces to the result for the delta poten-
tial and σxx ∝ B, a linear magnetoconductivity as σzz,
but much smaller [72]. In the long-range potential limit
d ≫ ℓB, we have σxx ∼ 1/B, which gives a negative
magnetoconductivity. For a finite potential range d, we
would have a crossover of σxx from B-linear to 1/B de-
pendence. Alternatively, as shown in Fig. 8(e), for a
finite d (= 5 nm) comparable to the magnetic length ℓB ,
we have a crossover of σxx from a linear-B dependence in
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Fig. 8 The longitudinal conductivity σzz and transverse
conductivity σxx of the Weyl semimetal in the ẑ-direction
magnetic field B for different potential ranges. The shared
parameters: kw = 0.1/nm, M = 5 eV · nm2, A = 1 eV·nm,
Vimp = 10 (eV)2·nm3. Reproduced from Ref. [74].

weak fields to a 1/B dependence in strong fields. While
at d = 0 and d≫ ℓB, we have the two limits as shown in
Figs. 8(d) and (f), respectively. For shorter d, a larger
critical magnetic field for the crossover is needed. Figure
8 also shows that the conductivity is larger for shorter d,
so the 1/B transverse magnetoconductivity in the long-
range limit may not survive when there are additional
short-range scatters.

In particular, in Fig. 8(f), σxx ∝ 1/B in the long-
range potential limit. In the field perpendicular to the
x − y plane, there is also a Hall conductivity σyx =
sgn(M)(kw/π)e

2/h+ en0/B, where the first term is the
anomalous Hall conductivity and the second term is the
classical conductivity. In weak fields, the classical Hall
effect dominates, then both σxx and σyx are proportional
to 1/B, and the resistivity ρxx = σxx/(σ

2
xx + σ2

yx) is
found to be linear in B. Note that here the linear MR
in perpendicular fields has a different scenario compared
to the previous works [119, 122]. Abrikosov used the
Hamiltonian vk⃗ · σ⃗ with linear dispersion and modelled
the disorder by the screened Coulomb potential under

the random phase approximation [119]. Song et al. dis-
cussed a semiclassical mechanism [122].

6 Remarks and perspective

In summary, we have systematically studied the quantum
transport in topological semimetals, including the weak
(anti-)localization, negative magnetoresistance, and the
magneto-transport in the quantum limit.

A single valley of Weyl fermions has the weak
anti-localization, while a single valley of double-Weyl
fermions has the weak localization. In the presence of
strong intervalley effects, both Weyl and double-Weyl
semimetals have the weak localization. The interplay
of electron-electron interaction and disorder scattering
can also give rise to a tendency to localization for Weyl
fermions. For Weyl and double-Weyl semimetals, we de-
rived a magnetoconductivity formula, which connects the
B2 behavior near zero field and

√
B behavior in stronger

fields, for the weak (anti-)localization in three dimen-
sions. Our formula of magnetoconductivity can be used
for a systematic study of the transport experiments on
topological semimetals.

We review the experiments on the negative magne-
toresistance in topological semimetals. Using the semi-
classical equation that includes the anomalous velocity
induced by the Berry curvature, we show the relation
between the magnetic monopole and the negative mag-
netoresistance. The negative magnetoresistance is shown
to diverge according to 1/n2/3, where n is the carrier
density. Therefore, demonstrating the carrier density
dependence of the negative magnetoresistance is a cru-
cial step to show the nontrivial topological properties of
topological semimetals.

In the quantum limit, we show that the negative mag-
netoresistance is not a compelling signature of the chiral
anomaly. The sign of the magnetoresistance in the quan-
tum limit depends the details of the disorder and band
dispersions. We give the conditions of the negative mag-
netoresistance. For long-range Gaussian potential and
at half filling, we can have a linear magnetoconductivity.
We also find a minimal conductivity at the Weyl nodes,
although the density of states vanishes.

Finally, we remark on the possible future works. The
weak (anti-)localization theories for nodal-line and drum-
head semimetal could be interesting topics. It is known
that the “chiral anomaly” could give a positive magneto-
conductivity [30, 31, 44, 117]. A double-Weyl semimetal
is also expected to have a negative magnetoresistance.
So far, most theories in the quantum limit employ the
Born approximation, e.g., the quantum linear magne-
toresistance [119]. When the magnetic length becomes
much shorter than the range of the disorder potential,
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electrons may be scattered by the same impurity for mul-
tiple times. The Born approximation contains the cor-
relation of two scattering events by the same impurity
[123]. In this situation, the validity of the Born approx-
imation was questioned in two dimensions [124, 125]. In
three dimensions, it is still unclear whether the correla-
tion of two scattering events in the Born approximation
is the building block for the multiple scattering under
extremely strong magnetic fields [122, 126]. The treat-
ment beyond the Born approximation will be a challeng-
ing topic for three-dimensional systems under extremely
strong magnetic fields. Recently, a linear and unsat-
urated magnetoresistance has been observed in many
topological semimetals [45, 48, 50–59, 62, 63, 67]. The
origin of the linear magnetoresistance remains elusive
and has attracted many theoretical works in the clas-
sical regime [122, 127–130] and in the quantum regime
[119]. The theory of the linear magnetoresistance will
still be an interesting topic. The superconductivity has
been observed around the point contact region on the
surface of Cd3As2 crystals [60, 61], which may inspire
more explorations.
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