418 research outputs found

    Analysis of metabolic dynamics during drought stress in Arabidopsis plants

    Get PDF
    Altres ajuts: we acknowledge support from the CERCA Programme/Generalitat de CatalunyaDrought is a major cause of agricultural losses worldwide. Climate change will intensify drought episodes threatening agricultural sustainability. Gaining insights into drought response mechanisms is vital for crop adaptation to climate emergency. To date, only few studies report comprehensive analyses of plant metabolic adaptation to drought. Here, we present a multifactorial metabolomic study of early-mid drought stages in the model plant Arabidopsis thaliana. We sampled root and shoot tissues of plants subjected to water withholding over a six-day time course, including brassinosteroids receptor mutants previously reported to show drought tolerance phenotypes. Furthermore, we sequenced the root transcriptome at basal and after 5 days drought, allowing direct correlation between metabolic and transcriptomic changes and the multi-omics integration. Significant abiotic stress signatures were already activated at basal conditions in a vascular-specific receptor overexpression (BRL3ox). These were also rapidly mobilized under drought, revealing a systemic adaptation strategy driven from inner tissues of the plant. Overall, this dataset provides a significant asset to study drought metabolic adaptation and allows its analysis from multiple perspective

    Cross sections for electron scattering from thiophene for a broad energy range

    Get PDF
    We present cross sections for elastic and inelastic electron scattering from thiophene calculated in the energy range 0.1-1000 eV. The R-matrix and independent atom representation-screening-corrected additivity rule (IAM-SCAR) methods were used for low-energy and intermediate and high scattering energies, respectively. The results provide a consistent picture of the scattering process in the whole energy range. The effect of including an interference term in the IAM-SCAR approach is considered. Agreement with prior theoretical results is also discussed

    Self-sufficient flow-biocatalysis by coimmobilization of pyridoxal 5′-phosphate and ω-transaminases onto porous carriers

    Get PDF
    We expanded the application of self-sufficient heterogeneous biocatalysts containing coimmobilized w-transaminases and pyridoxal 5´-phosphate (PLP) to efficiently operate packed-bed reactors in continuous flow. Using a w-transaminase from Halomonas elongata co-immobilized with PLP onto porous methacrylate-based carriers coated with polyethyleneimine, we operated a packed-bed reactor continuously for up to 50 column volumes at 1.45 mL x min-1 in the enantioselective deamination of model amines (α-methylbenzyl amine), yielding > 90% conversion in all cycles without exogenous addition of cofactor. In this work, we expanded the concept of self-sufficient heterogeneous biocatalysts to other w-transaminases such as the ones from Chromobacterium violaceum and Pseudomonas fluorescens. We found that enzymes with lower affinities towards PLP present lower operational stabilities in flow, even when coimmobilizing PLP. Furthermore, w-transaminases co-immobilized with PLP were successfully implemented for the continuous synthesis of amines and the sustainable metrics were assessed. These results give some clues to exploit PLP-dependent w-transaminases under industrially relevant continuous operations in a more cost-effective and environmentally friendly process

    Selective Immobilization of Fluorescent Proteins for the Fabrication of Photoactive Materials

    Get PDF
    The immobilization of fluorescent proteins is a key technology enabling to fabricate a new generation of photoactive materials with potential technological applications. Herein we have exploited superfolder green (sGFP) and red (RFP) fluorescent proteins expressed with different polypeptide tags. We fused these fluorescent proteins to His-tags to immobilize them on graphene 3D hydrogels, and Cys-tags to immobilize them on porous microparticles activated with either epoxy or disulfide groups and with Lys-tags to immobilize them on upconverting nanoparticles functionalized with carboxylic groups. Genetically programming sGFP and RFP with Cys-tag and His-tag, respectively, allowed tuning the protein spatial organization either across the porous structure of two microbeads with different functional groups (agarose-based materials activated with metal chelates and epoxy-methacrylate materials) or across the surface of a single microbead functionalized with both metal-chelates and disulfide groups. By using different polypeptide tags, we can control the attachment chemistry but also the localization of the fluorescent proteins across the material surfaces. The resulting photoactive material formed by His-RFP immobilized on graphene hydrogels has been tested as pH indicator to measure pH changes in the alkaline region, although the immobilized fluorescent protein exhibited a narrower dynamic range to measure pH than the soluble fluorescent protein. Likewise, the immobilization of Lys-sGFP on alginate-coated upconverting nanoparticles enabled the infrared excitation of the fluorescent protein to be used as a green light emitter. These novel photoactive biomaterials open new avenues for innovative technological developments towards the fabrication of biosensors and photonic devices

    Changes in the relationships between aerobic capacity and hematological variables after a diet and exercise intervention.

    Get PDF
    Relación entre los cambios de las variable hematolóicas y la capacidad aeróbic

    Metal substrate catalysis in the confined space for platinum drug delivery

    Get PDF
    [EN] Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds. In the work presented here, we show that flavin reactivity within a hydrogel matrix provides a viable solution for the efficient catalytic activation and delivery of cisplatin, a worldwide clinically-approved inorganic chemotherapy agent. This is achieved by ionically adsorbing a flavin catalyst and a Pt(iv) prodrug as substrate into porous amino-functionalized agarose beads. The hydrogel chassis supplies high local concentrations of electron donating groups/molecules in the surrounding of the catalyst, ultimately boosting substrate conversion rates (TOF >200 min(-1)) and enabling controlled liberation of the drug by light or chemical stimuli. Overall, this approach can afford platforms for the efficient delivery of platinum drugs as demonstrated herein by using a transdermal diffusion model simulating the human skin.We acknowledge financial support from the Spanish State Research Agency (grants CTQ2016-80844-R, PID2019-109111RBI00, RTI2018-094398-B-I00, BIO2014-61838-EXP) and the Basque Government (Eusko Jaurlaritza, grant PIBA_2021_1_0034). S. V. L. thanks the Mexican Council of Science and Technology (CONACyT) for the postdoctoral fellowship she received (ref. CVU-267390). C. S. C. thanks Gipuzkoa Foru Aldundia (Gipuzkoa Fellows program; grant number 2019-FELL-000018-01/62/2019) for.nancial support. L. S. thanks the Spanish MultiMetDrugs network (RED2018-102471-T) for fruitful discussion. FLG thanks the Spanish Biocatalysis network (RED2018-102403T) and the European Research Council (ERC-Co-2018 818089). This work was performed under the Maria de Maeztu and Severo Ochoa Centres of Excellence Programme run by the Spanish State Research Agency, Grant No. MDM-2017-0720 (CIC biomaGUNE) and CEX2018-000867-S (DIPC)

    Validation of a new equation to calculate the maximum oxygen uptake

    Full text link
    The main regression equations to estimate the maximum oxygen uptake (V02maxl have been obtained with the total population studied [1-31. A limitation of these studies is the validity, since the prediction equations were carried out with a particular population and they were validated with themselves, because the samples did not tend to be very large. The cross validation must be used to check the accuracy of a prediction equations when they are applied to different populations. The aim of this study was to determine the validity of the maximum oxygen uptake prediction equation obtained with cross validation

    Heart rate recovery in elite Spanish male athletes

    Full text link
    Recuperación de la frecuencia cardiaca en atletas varones españoles During postexercise recovery, heart rate (HR) initially falls rapidly, followed by a period of slower decrease, until resting values are reached. The aim of the present work was to examine the differences in the recovery heart rate (RHR) between athletes engaged in static and dynamic sports
    • …
    corecore