101 research outputs found

    Bcells and their regulatory functions during Tuberculosis : latency and active disease

    Get PDF
    CITATION: Loxton, A. G. 2019. Bcells and their regulatory functions during Tuberculosis : latency and active disease. Molecular Immunology, 111:145-151, doi:10.1016/j.molimm.2019.04.012.The original publication is available at https://www.sciencedirect.comENGLISH ABSTRACT: Tuberculosis (TB) is a global epidemic with devastating consequences. Emerging evidence suggests that B-cells have the ability to modulate the immune response and understanding these roles during Mycobacterium tuberculosis (M.tb) infection can help to find new strategies to treat TB. The immune system of individuals with pulmonary TB form granulomas in the lung which controls the infection by inhibiting the M.tb growth and acts as a physical barrier. Thereafter, surviving M.tb become dormant and in most cases the host’s immunity prevents TB reactivation. B-cells execute several immunological functions and are regarded as protective regulators of immune responses by antibody and cytokine production, as well as presenting antigen. Some of these B-cells, or regulatory B-cells, have been shown to express death-inducing ligands, such as Fas ligand (FasL). This expression and binding to the Fas receptor leads to apoptosis, a major immune regulation mechanism, in addition to the ability to induce T-cell tolerance. Here, I discuss the relevance of B-cells, in particular their non-humoral functions by addressing their regulatory properties during M.tb infection.https://www.sciencedirect.com/science/article/pii/S0161589018308708Publisher's versio

    Frequency of Mycobacterium tuberculosis-specific CD8+T-cells in the course of anti-tuberculosis treatment

    Get PDF
    Anti-tuberculosis drug treatment is known to affect the number, phenotype, and effector functionality of antigen-specific T-cells. In order to objectively gauge Mycobacterium tuberculosis (MTB)-specific CD8+ T-cells at the single-cell level, we developed soluble major histocompatibility complex (MHC) class I multimers/peptide multimers, which allow analysis of antigen-specific T-cells without ex vivo manipulation or functional tests. We constructed 38 MHC class I multimers covering some of the most frequent MHC class I alleles (HLA-A*02:01, A*24:02, A*30:01, A*30:02, A*68:01, B*58:01, and C*07:01) pertinent to a South African or Zambian population, and presenting the following MTB-derived peptides: the early expressed secreted antigens TB10.4 (Rv0288), Ag85B (Rv1886c), and ESAT-6 (Rv3875), as well as intracellular enzymes, i.e., glycosyltransferase 1 (Rv2957), glycosyltransferase 2 (Rv2958c), and cyclopropane fatty acid synthase (Rv0447c). Anti-TB treatment appeared to impact on the frequency of multimer-positive CD8+ T-cells, with a general decrease after 6 months of therapy. Also, a reduction in the total central memory CD8+ T-cell frequencies, as well as the antigen-specific compartment in CD45RA - CCR7+ T-cells was observed. We discuss our findings on the basis of differential dynamics of MTB-specific T-cell frequencies, impact of MTB antigen load on T-cell phenotype, and antigen-specific T-cell responses in tuberculosis. (c) 2015 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases

    Advancing animal tuberculosis surveillance using culture-independent long-read whole-genome sequencing

    Get PDF
    Acknowledgments Some of the figures (Figures 4–6 and Supplementary Material S1) were generated using BioRender and draw.io, respectively. Funding The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research was funded by the Wellcome Foundation (grant #222941/Z/21/Z), the South African Medical Research Council, American Association of Zoo Veterinarians Wild Animal Health Fund [S005651 and S007355], the National Research Foundation South African Research Chair Initiative [grant #86949], and MHM was supported by Wellcome Trust (grant #216634/Z/19/Z). AGL is supported by the EDCTP TESA III network (CSA2020NoE-3104).Peer reviewedPublisher PD

    Evaluation of cytokine responses against novel Mtb antigens as diagnostic markers for TB disease.

    Get PDF
    OBJECTIVE: We investigated the accuracy of host markers detected in Mtb antigen-stimulated whole blood culture supernatant in the diagnosis of TB. METHODS: Prospectively, blood from 322 individuals with presumed TB disease from six African sites was stimulated with four different Mtb antigens (Rv0081, Rv1284, ESAT-6/CFP-10, and Rv2034) in a 24 h whole blood stimulation assay (WBA). The concentrations of 42 host markers in the supernatants were measured using the Luminex multiplex platform. Diagnostic biosignatures were investigated through the use of multivariate analysis techniques. RESULTS: 17% of the participants were HIV infected, 106 had active TB disease and in 216 TB was excluded. Unstimulated concentrations of CRP, SAA, ferritin and IP-10 had better discriminating ability than markers from stimulated samples. Accuracy of marker combinations by general discriminant analysis (GDA) identified a six analyte model with 77% accuracy for TB cases and 84% for non TB cases, with a better performance in HIV uninfected patients. CONCLUSIONS: A biosignature of 6 cytokines obtained after stimulation with four Mtb antigens has moderate potential as a diagnostic tool for pulmonary TB disease individuals and stimulated marker expression had no added value to unstimulated marker performance

    Analysis of host responses to Mycobacterium tuberculosis antigens in a multi-site study of subjects with different TB and HIV infection states in sub-Saharan Africa.

    Get PDF
    BACKGROUND: Tuberculosis (TB) remains a global health threat with 9 million new cases and 1.4 million deaths per year. In order to develop a protective vaccine, we need to define the antigens expressed by Mycobacterium tuberculosis (Mtb), which are relevant to protective immunity in high-endemic areas. METHODS: We analysed responses to 23 Mtb antigens in a total of 1247 subjects with different HIV and TB status across 5 geographically diverse sites in Africa (South Africa, The Gambia, Ethiopia, Malawi and Uganda). We used a 7-day whole blood assay followed by IFN-γ ELISA on the supernatants. Antigens included PPD, ESAT-6 and Ag85B (dominant antigens) together with novel resuscitation-promoting factors (rpf), reactivation proteins, latency (Mtb DosR regulon-encoded) antigens, starvation-induced antigens and secreted antigens. RESULTS: There was variation between sites in responses to the antigens, presumably due to underlying genetic and environmental differences. When results from all sites were combined, HIV- subjects with active TB showed significantly lower responses compared to both TST(-) and TST(+) contacts to latency antigens (Rv0569, Rv1733, Rv1735, Rv1737) and the rpf Rv0867; whilst responses to ESAT-6/CFP-10 fusion protein (EC), PPD, Rv2029, TB10.3, and TB10.4 were significantly higher in TST(+) contacts (LTBI) compared to TB and TST(-) contacts fewer differences were seen in subjects with HIV co-infection, with responses to the mitogen PHA significantly lower in subjects with active TB compared to those with LTBI and no difference with any antigen. CONCLUSIONS: Our multi-site study design for testing novel Mtb antigens revealed promising antigens for future vaccine development. The IFN-γ ELISA is a cheap and useful tool for screening potential antigenicity in subjects with different ethnic backgrounds and across a spectrum of TB and HIV infection states. Analysis of cytokines other than IFN-γ is currently on-going to determine correlates of protection, which may be useful for vaccine efficacy trials

    Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts

    Get PDF
    Background Despite the high global disease burden of tuberculosis (TB), the disease caused by Mycobacterium tuberculosis (Mtb) infection, novel treatments remain an urgent medical need. Development efforts continue to be hampered by the reliance on culture-based methods, which often take weeks to obtain due to the slow growth rate of Mtb. The availability of a “real-time” measure of treatment efficacy could accelerate TB drug development. Sputum lipoarabinomannan (LAM; an Mtb cell wall glycolipid) has promise as a pharmacodynamic biomarker of mycobacterial sputum load. Methods The present analysis evaluates LAM as a surrogate for Mtb burden in the sputum samples from 4 cohorts of a total of 776 participants. These include those from 2 cohorts of 558 non-TB and TB participants prior to the initiation of treatment (558 sputum samples), 1 cohort of 178 TB patients under a 14-day bactericidal activity trial with various mono- or multi-TB drug therapies, and 1 cohort of 40 TB patients with data from the first 56-day treatment of a standard 4-drug regimen. Results Regression analysis demonstrated that LAM was a predictor of colony-forming unit (CFU)/mL values obtained from the 14-day treatment cohort, with well-estimated model parameters (relative standard error ≤ 22.2%). Moreover, no changes in the relationship between LAM and CFU/mL were observed across the different treatments, suggesting that sputum LAM can be used to reasonably estimate the CFU/mL in the presence of treatment. The integrated analysis showed that sputum LAM also appears to be as good a predictor of time to Mycobacteria Growth Incubator Tube (MGIT) positivity as CFU/mL. As a binary readout, sputum LAM positivity is a strong predictor of solid media or MGIT culture positivity with an area-under-the-curve value of 0.979 and 0.976, respectively, from receiver-operator curve analysis. Conclusions Our results indicate that sputum LAM performs as a pharmacodynamic biomarker for rapid measurement of Mtb burden in sputum, and thereby may enable more efficient early phase clinical trial designs (e.g., adaptive designs) to compare candidate anti-TB regimens and streamline dose selection for use in pivotal trials. Trial registration NexGen EBA study (NCT02371681

    Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients

    Get PDF
    SummaryPathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396–1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo

    Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers

    Get PDF
    CITATION: Esterhuyse, M. M. et al. 2015. Epigenetics and proteomics join transcriptomics in the quest for tuberculosis biomarkers. mBio, 6(5):e01187-15, doi:10.1128/mBio.01187-15.The original publication is available at http://mbio.asm.orgAn estimated one-third of the world’s population is currently latently infected with Mycobacterium tuberculosis. Latent M. tuberculosis infection (LTBI) progresses into active tuberculosis (TB) disease in ~5 to 10% of infected individuals. Diagnostic and prognostic biomarkers to monitor disease progression are urgently needed to ensure better care for TB patients and to decrease the spread of TB. Biomarker development is primarily based on transcriptomics. Our understanding of biology combined with evolving technical advances in high-throughput techniques led us to investigate the possibility of additional platforms (epigenetics and proteomics) in the quest to (i) understand the biology of the TB host response and (ii) search for multiplatform biosignatures in TB. We engaged in a pilot study to interrogate the DNA methylome, transcriptome, and proteome in selected monocytes and granulocytes from TB patients and healthy LTBI participants. Our study provides first insights into the levels and sources of diversity in the epigenome and proteome among TB patients and LTBI controls, despite limitations due to small sample size. Functionally the differences between the infection phenotypes (LTBI versus active TB) observed in the different platforms were congruent, thereby suggesting regulation of function not only at the transcriptional level but also by DNA methylation and microRNA. Thus, our data argue for the development of a large-scale study of the DNA methylome, with particular attention to study design in accounting for variation based on gender, age, and cell type.http://mbio.asm.org/content/6/5/e01187-15.abstract?sid=fe0ea1c7-6da2-4e53-b4a4-5cd8233777c7Publisher's versio

    Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis.

    Get PDF
    Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13-18 months, 742 at 7-12 months and 5,131 detected 1-6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1-6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology

    Potential of novel Mycobacterium tuberculosis infection phase-dependent antigens in the diagnosis of TB disease in a high burden setting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Confirming tuberculosis (TB) disease in suspects in resource limited settings is challenging and calls for the development of more suitable diagnostic tools. Different <it>Mycobacterium tuberculosis (M.tb) </it>infection phase-dependent antigens may be differentially recognized in infected and diseased individuals and therefore useful as diagnostic tools for differentiating between <it>M.tb </it>infection states. In this study, we assessed the diagnostic potential of 118 different <it>M.tb </it>infection phase-dependent antigens in TB patients and household contacts (HHCs) in a high-burden setting.</p> <p>Methods</p> <p>Antigens were evaluated using the 7-day whole blood culture technique in 23 pulmonary TB patients and in 19 to 21 HHCs (total n = 101), who were recruited from a high-TB incidence community in Cape Town, South Africa. Interferon-gamma (IFN-γ) levels in culture supernatants were determined by ELISA.</p> <p>Results</p> <p>Eight classical TB vaccine candidate antigens, 51 DosR regulon encoded antigens, 23 TB reactivation antigens, 5 TB resuscitation promoting factors (rpfs), 6 starvation and 24 other stress response-associated TB antigens were evaluated in the study. The most promising antigens for ascertaining active TB were the rpfs (Rv0867c, Rv2389c, Rv2450c, Rv1009 and Rv1884c), with Areas under the receiver operating characteristics curves (AUCs) between 0.72 and 0.80. A combination of <it>M.tb </it>specific ESAT-6/CFP-10 fusion protein, Rv2624c and Rv0867c accurately predicted 73% of the TB patients and 80% of the non-TB cases after cross validation.</p> <p>Conclusions</p> <p>IFN-γ responses to TB rpfs show promise as TB diagnostic candidates and should be evaluated further for discrimination between <it>M.tb </it>infection states.</p
    corecore