384 research outputs found

    Aerial Survey Estimates of Abundance of the Eastern Chukchi Sea Stock of Beluga Whales (Delphinapterus leucas) in 2012

    Get PDF
    The eastern Chukchi Sea (ECS) stock of beluga whales is one of three stocks in western Alaska that are co-managed by the National Marine Fisheries Service and the Alaska Beluga Whale Committee. Abundance of this stock was estimated as 3710 in 1991 from incomplete data. Analysis of data from satellite-linked time-depth recorders (SDRs) attached to belugas in summer concentration areas of the ECS and Beaufort Sea (BS) stocks provided an overview of beluga distribution and movements and allowed the identification of an area (140˚ W to 157˚ W in the BS) and a time period (19 July – 20 August) in which the distributions of the two stocks do not overlap. Aerial survey data were collected by the Aerial Surveys of Arctic Marine Mammals (ASAMM) project in that region and time period in 2012. We used those data in a line transect analysis that estimated there were 5547 (CV = 0.22) surface-visible belugas in the study area. Data from SDRs were used to develop correction factors to account for animals that were missed because they were either outside of the study area or diving too deep to be seen, resulting in a total abundance estimate of 20 752 (CV = 0.70). The average annual Alaska Native subsistence harvest from the ECS stock (57) is about 0.3% of the population estimate. Without data collected by the ASAMM project and from satellite-linked tags, this analysis would not have been possible. Additional surveys and tagging of ECS belugas are warranted.Le stock de bélugas de l’est de la mer des Tchouktches (EMT) figure parmi les trois stocks de l’ouest de l’Alaska à être gérés conjointement par le National Marine Fisheries Service et l’Alaska Beluga Whale Committee. À partir de données incomplètes, l’abondance de ce stock a été estimée à 3 710 en 1991. L’analyse des données recueillies à l’aide d’enregistreurs de profondeur temporelle satellitaires (SDR) fixés aux bélugas dans les zones de concentration estivales de l’EMT et de la mer de Beaufort (MB) a permis d’obtenir un aperçu de la répartition et du déplacement des bélugas ainsi que de cerner une zone (de 140˚ O à 157˚ O dans la MB) et une période (du 19 juillet au 20 août) pour lesquelles la répartition des deux stocks ne se chevauchent pas. Le projet Aerial Surveys of Arctic Marine Mammals (ASAMM) a permis de recueillir des données à partir de levés aériens pour la région et la période concernées en 2012. Grâce à une analyse de lignes interceptées, ces données ont permis d’estimer qu’il y avait 5 547 (CV = 0,22) bélugas visibles à la surface dans la zone à l’étude. Les données en provenance de SDR ont servi à mettre au point des facteurs de correction pour tenir compte des bélugas qui n’ont pas été captés, soit parce qu’ils se trouvaient en dehors de la zone visée par l’étude, soit parce qu’ils plongeaient trop loin pour être vus, ce qui s’est traduit par une estimation totale d’abondance de 20 752 (CV = 0,70) bélugas. La prise de subsistance annuelle moyenne de stock (57) par les Autochtones de l’Alaska dans l’EMT correspond à environ à 0,3 % de l’estimation de la population. Cette analyse n’aurait pu être possible sans les données prélevées par le projet ASAMM et les SDR. D’autres levés et l’étiquetage des bélugas de l’EMT s’imposent

    Roadmap for Solar System Research July 2015

    Get PDF

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    All-sky search for long-duration gravitational wave transients with initial LIGO

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society

    Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model

    Get PDF
    We present results from a semicoherent search for continuous gravitational waves from the low-mass x-ray binary Scorpius X-1, using a hidden Markov model (HMM) to track spin wandering. This search improves on previous HMM-based searches of LIGO data by using an improved frequency domain matched filter, the J-statistic, and by analyzing data from Advanced LIGO's second observing run. In the frequency range searched, from 60 to 650 Hz, we find no evidence of gravitational radiation. At 194.6 Hz, the most sensitive search frequency, we report an upper limit on gravitational wave strain (at 95% confidence) of h095%=3.47×10-25 when marginalizing over source inclination angle. This is the most sensitive search for Scorpius X-1, to date, that is specifically designed to be robust in the presence of spin wandering. © 2019 American Physical Society
    • …
    corecore