25,792 research outputs found

    Identification of the YfgF MASE1 domain as a modulator of bacterial responses to aspartate

    Get PDF
    Complex 3'-5'-cyclic diguanylic acid (c-di-GMP) responsive regulatory networks that are modulated by the action of multiple diguanylate cyclases (DGC; GGDEF domain proteins) and phosphodiesterases (PDE; EAL domain proteins) have evolved in many bacteria. YfgF proteins possess a membrane-anchoring domain (MASE1), a catalytically inactive GGDEF domain and a catalytically active EAL domain. Here, sustained expression of the Salmonella enterica spp. Enterica ser. Enteritidis YfgF protein is shown to mediate inhibition of the formation of the aspartate chemotactic ring on motility agar under aerobic conditions. This phenomenon was c-di-GMP-independent because it occurred in a Salmonella strain that lacked the ability to synthesize c-di-GMP and also when PDE activity was abolished by site-directed mutagenesis of the EAL domain. YfgF-mediated inhibition of aspartate chemotactic ring formation was impaired in the altered redox environment generated by exogenous p-benzoquinone. This ability of YfgF to inhibit the response to aspartate required a motif, (213)Lys-Lys-Glu(215), in the predicted cytoplasmic loop between trans-membrane regions 5 and 6 of the MASE1 domain. Thus, for the first time the function of a MASE1 domain as a redox-responsive regulator of bacterial responses to aspartate has been shown

    Determination of Newton's gravitational constant, G, with improved precision Status report, 1 Apr. - 30 Sep. 1965

    Get PDF
    Apparatus and techniques for laboratory determination of Newtonian gravitation constan

    Predicting uncertainty in sediment transport and landscape evolution - the influence of initial surface conditions

    Get PDF
    © 2015. Numerical landscape evolution models were initially developed to examine natural catchment hydrology and geomorphology and have become a common tool to examine geomorphic behaviour over a range of time and space scales. These models all use a digital elevation model (DEM) as a representation of the landscape surface and a significant issue is the quality and resolution of this surface. Here we focus on how subtle perturbations or roughness on the DEM surface can produce alternative model results. This study is carried out by randomly varying the elevations of the DEM surface and examining the effect on sediment transport rates and geomorphology for a proposed rehabilitation design for a post-mining landscape using multiple landscape realisations with increasing magnitudes of random changes. We show that an increasing magnitude of random surface variability does not appear to have any significant effect on sediment transport over millennial time scales. However, the random surface variability greatly changes the temporal pattern or delivery of sediment output. A significant finding is that all simulations at the end of the 10,000 year modelled period are geomorphologically similar and present a geomorphological equifinality. However, the individual patterns of erosion and deposition were different for repeat simulations with a different sequence of random perturbations. The alternative positions of random perturbations strongly influence local patterns of hillslope erosion and evolution together with the pattern and behaviour of deposition. The findings demonstrate the complex feedbacks that occur even within a simple modelled system

    Integrated optical directional coupler biosensor

    No full text
    We present measurements on biomolecular binding reactions, using a new type of integrated optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+-Na+ ion-exchange in glass and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered

    Plume mapping and isotopic characterisation of anthropogenic methane sources

    Get PDF
    Methane stable isotope analysis, coupled with mole fraction measurement, has been used to link isotopic signature to methane emissions from landfill sites, coal mines and gas leaks in the United Kingdom. A mobile Picarro G2301 CRDS (Cavity Ring-Down Spectroscopy) analyser was installed on a vehicle, together with an anemometer and GPS receiver, to measure atmospheric methane mole fractions and their relative location while driving at speeds up to 80 kph. In targeted areas, when the methane plume was intercepted, air samples were collected in Tedlar bags, for delta C-13-CH4 isotopic analysis by CF-GC-IRMS (Continuous Flow Gas Chromatography-Isotope Ratio Mass Spectrometry). This method provides high precision isotopic values, determining delta C-13-CH4 to +/- 0.05 per mil. The bulk signature of the methane plume into the atmosphere from the whole source area was obtained by Keeling plot analysis, and a delta C-13 -CH4 signature, with the relative uncertainty, allocated to each methane source investigated. Both landfill and natural gas emissions in SE England have tightly constrained isotopic signatures. The averaged delta C-13-CH4 for landfill sites is -58 +/- 3%o. The delta C-13-CH4 signature for gas leaks is also fairly constant around -36 +/- 2 parts per thousand, a value characteristic of homogenised North Sea supply. In contrast, signatures for coal mines in N. England and Wales fall in a range of -51.2 +/- 0.3 parts per thousand to 30.9 +/- 1.4 parts per thousand, but can be tightly constrained by region. The study demonstrates that CRDS-based mobile methane measurement coupled with off-line high precision isotopic analysis of plume samples is an efficient way of characterising methane sources. It shows that iiotopic measurements allow type identification, and possible location of previously unknown methane sources. In modelling studies this measurement provides an independent constraint to determine the contributions of different sources to the regional methane budget and in the verification of inventory source distribution. (C) 2015 Elsevier Ltd. All rights reserved

    The European Convention and Human Rights in Northern Ireland

    Get PDF

    Vegetative Nuclear Division In Neurospora

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141698/1/ajb210695.pd

    Wall Structure Of Ascospores Of Neurospora Tetrasperma

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142013/1/ajb213143.pd

    The European Convention and Human Rights in Northern Ireland

    Get PDF

    Monoamine oxidase-A modulates apoptotic cell death induced by staurosporine in human neuroblastoma cells

    Get PDF
    Monoamine oxidases (MAOs) are mitochondrial enzymes which control the levels of neurotransmitters in the brain and dietary amines in peripheral tissues via oxidative deamination. MAO has also been implicated in cell signalling. In this study, we describe the MAO-A isoform as functional in apoptosis induced by staurosporine (STS) in human dopaminergic neuroblastoma cells (SH-SY5Y). Increased levels of MAO-A activity were induced by STS, accompanied by increased MAO-A protein and activation of the initiator of the intrinsic pathway, caspase 9, and the executioner caspase 3. MAO-A mRNA levels were unaffected by STS, suggesting that changes in MAO-A protein are due to post-transcriptional events. Two unrelated MAO-A inhibitors reduced caspase activation. STS treatment resulted in sustained activation of the mitogen-activated protein kinase pathway enzymes extracellular regulated kinase, c-jun terminal kinase and p38, and depletion of the anti-apoptotic protein Bcl-2. These changes were significantly reversed by MAO inhibition. Production of reactive oxygen species was increased following STS exposure, which was blocked by both MAO inhibition and the antioxidant N-acetylcysteine. Therefore our data provide evidence that MAO-A, through its production of reactive oxygen species as a by-product of its catalytic activity on the mitochondrial surface, is recruited by the cell to enhance apoptotic signalling
    corecore