788 research outputs found

    Frequency dependence of thermal noise in gram-scale cantilever flexures

    Get PDF
    We present measurements of the frequency dependence of thermal noise in aluminum and niobium flexures. Our measurements cover the audio-frequency band from 10 Hz to 10 kHz, which is of particular relevance to ground-based interferometric gravitational wave detectors, and span up to an order of magnitude above and below the fundamental flexure resonances. Results from two flexures are well explained by a simple model in which both structural and thermoelastic loss play a role. The ability of such a model to explain this interplay is important for investigations of quantum-radiation-pressure noise and the standard quantum limit. Furthermore, measurements on a third flexure provide evidence that surface damage can affect the frequency dependence of thermal noise in addition to reducing the quality factor, a result which will aid the understanding of how aging effects impact on thermal noise behavior.Australian Research Counci

    Troponin in Acute chest pain to Risk stratify and Guide EffecTive use of Computed Tomography Coronary Angiography (TARGET-CTCA):A randomised controlled trial

    Get PDF
    Background: The majority of patients with suspected acute coronary syndrome presenting to the emergency department will be discharged once myocardial infarction has been ruled out, although a proportion will have unrecognised coronary artery disease. In this setting, high-sensitivity cardiac troponin identifies those at increased risk of future cardiac events. In patients with intermediate cardiac troponin concentrations in whom myocardial infarction has been ruled out, this trial aims to investigate whether outpatient computed tomography coronary angiography (CTCA) reduces subsequent myocardial infarction or cardiac death. Methods: TARGET-CTCA is a multicentre prospective randomised open label with blinded endpoint parallel group event driven trial. After myocardial infarction and clear alternative diagnoses have been ruled out, participants with intermediate cardiac troponin concentrations (5 ng/L to 99th centile upper reference limit) will be randomised 1:1 to outpatient CTCA plus standard of care or standard of care alone. The primary endpoint is myocardial infarction or cardiac death. Secondary endpoints include clinical, patient-centred, process and cost-effectiveness. Recruitment of 2270 patients will give 90% power with a two-sided P value of 0.05 to detect a 40% relative risk reduction in the primary endpoint. Follow-up will continue until 97 primary outcome events have been accrued in the standard care arm with an estimated median follow-up of 36 months. Discussion: This randomised controlled trial will determine whether high-sensitivity cardiac troponin-guided CTCA can improve outcomes and reduce subsequent major adverse cardiac events in patients presenting to the emergency department who do not have myocardial infarction. Trial registration: ClinicalTrials.gov Identifier: NCT03952351. Registered on May 16, 2019

    Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses

    Get PDF
    Carbon nanotubes are commercially-important products of nanotechnology; however, their low density and small size makes carbon nanotube respiratory exposures likely during their production or processing. We have previously shown mitotic spindle aberrations in cultured primary and immortalized human airway epithelial cells exposed to single-walled carbon nanotubes (SWCNT). In this study, we examined whether multi-walled carbon nanotubes (MWCNT) cause mitotic spindle damage in cultured cells at doses equivalent to 34 years of exposure at the NIOSH Recommended Exposure Limit (REL). MWCNT induced a dose responsive increase in disrupted centrosomes, abnormal mitotic spindles and aneuploid chromosome number 24 hours after exposure to 0.024, 0.24, 2.4 and 24 μg/cm2 MWCNT. Monopolar mitotic spindles comprised 95% of disrupted mitoses. Three-dimensional reconstructions of 0.1 μm optical sections showed carbon nanotubes integrated with microtubules, DNA and within the centrosome structure. Cell cycle analysis demonstrated a greater number of cells in S-phase and fewer cells in the G2 phase in MWCNT-treated compared to diluent control, indicating a G1/S block in the cell cycle. The monopolar phenotype of the disrupted mitotic spindles and the G1/S block in the cell cycle is in sharp contrast to the multi-polar spindle and G2 block in the cell cycle previously observed following exposure to SWCNT. One month following exposure to MWCNT there was a dramatic increase in both size and number of colonies compared to diluent control cultures, indicating a potential to pass the genetic damage to daughter cells. Our results demonstrate significant disruption of the mitotic spindle by MWCNT at occupationally relevant exposure levels
    corecore