266 research outputs found

    Soft two-meson-exchange nucleon-nucleon potentials. I. Planar and crossed-box diagrams

    Get PDF
    Pion-meson-exchange nucleon-nucleon potentials are derived for two nucleons in the intermediate states. The mesons we include are (i) pseudoscalar mesons: π,η,η\pi, \eta, \eta'; (ii) vector mesons: ρ,ω,ϕ\rho, \omega, \phi; (iii) scalar mesons: a0(980),ε(760),f0(975)a_{0}(980), \varepsilon(760), f_{0}(975); and (iv) the J=0J=0 contribution from the Pomeron. Strong dynamical pair suppression is assumed, and at the nucleon-nucleon-meson vertices Gaussian form factors are incorporated into the relativistic two-body framework using a dispersion representation for the pion- and meson-exchange amplitudes. The Fourier transformations are performed using factorization techniques for the energy denominators. The potentials are first calculated in the adiabatic approximation to all planar and crossed three-dimensional momentum-space π\pi-meson diagrams. Next, we calculate the 1/M1/M corrections.Comment: 28 pages RevTeX, 8 postscript figures; revised version as to appear in Phys. Rev.

    Resolving Curvature Singularities in Holomorphic Gravity

    Get PDF
    We formulate holomorphic theory of gravity and study how the holomorphy symmetry alters the two most important singular solutions of general relativity: black holes and cosmology. We show that typical observers (freely) falling into a holomorphic black hole do not encounter a curvature singularity. Likewise, typical observers do not experience Big Bang singularity. Unlike Hermitian gravity \cite{MantzHermitianGravity}, Holomorphic gravity does not respect the reciprocity symmetry and thus it is mainly a toy model for a gravity theory formulated on complex space-times. Yet it is a model that deserves a closer investigation since in many aspects it resembles Hermitian gravity and yet calculations are simpler. We have indications that holomorphic gravity reduces to the laws of general relativity correctly at large distance scales.Comment: 14 pages, 7 figure

    On the structure and evolution of a polar crown prominence/filament system

    Full text link
    Polar crown prominences are made of chromospheric plasma partially circling the Suns poles between 60 and 70 degree latitude. We aim to diagnose the 3D dynamics of a polar crown prominence using high cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304 and 171A and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195A. Using time series across specific structures we compare flows across the disk in 195A with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns which are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171A two-color images. We also observe intermittent but repetitious flows with velocity 15 km/s in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament linkage model.Comment: 24 pages, 14 figures, Accepted for publication in Solar Physics Journal, Movies can be found at http://www2.mps.mpg.de/data/outgoing/panesar

    Interstellar MHD Turbulence and Star Formation

    Full text link
    This chapter reviews the nature of turbulence in the Galactic interstellar medium (ISM) and its connections to the star formation (SF) process. The ISM is turbulent, magnetized, self-gravitating, and is subject to heating and cooling processes that control its thermodynamic behavior. The turbulence in the warm and hot ionized components of the ISM appears to be trans- or subsonic, and thus to behave nearly incompressibly. However, the neutral warm and cold components are highly compressible, as a consequence of both thermal instability in the atomic gas and of moderately-to-strongly supersonic motions in the roughly isothermal cold atomic and molecular components. Within this context, we discuss: i) the production and statistical distribution of turbulent density fluctuations in both isothermal and polytropic media; ii) the nature of the clumps produced by thermal instability, noting that, contrary to classical ideas, they in general accrete mass from their environment; iii) the density-magnetic field correlation (or lack thereof) in turbulent density fluctuations, as a consequence of the superposition of the different wave modes in the turbulent flow; iv) the evolution of the mass-to-magnetic flux ratio (MFR) in density fluctuations as they are built up by dynamic compressions; v) the formation of cold, dense clouds aided by thermal instability; vi) the expectation that star-forming molecular clouds are likely to be undergoing global gravitational contraction, rather than being near equilibrium, and vii) the regulation of the star formation rate (SFR) in such gravitationally contracting clouds by stellar feedback which, rather than keeping the clouds from collapsing, evaporates and diperses them while they collapse.Comment: 43 pages. Invited chapter for the book "Magnetic Fields in Diffuse Media", edited by Elisabete de Gouveia dal Pino and Alex Lazarian. Revised as per referee's recommendation

    Mathematics of Gravitational Lensing: Multiple Imaging and Magnification

    Full text link
    The mathematical theory of gravitational lensing has revealed many generic and global properties. Beginning with multiple imaging, we review Morse-theoretic image counting formulas and lower bound results, and complex-algebraic upper bounds in the case of single and multiple lens planes. We discuss recent advances in the mathematics of stochastic lensing, discussing a general formula for the global expected number of minimum lensed images as well as asymptotic formulas for the probability densities of the microlensing random time delay functions, random lensing maps, and random shear, and an asymptotic expression for the global expected number of micro-minima. Multiple imaging in optical geometry and a spacetime setting are treated. We review global magnification relation results for model-dependent scenarios and cover recent developments on universal local magnification relations for higher order caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of General Relativity and Gravitatio

    Physics of Solar Prominences: II - Magnetic Structure and Dynamics

    Full text link
    Observations and models of solar prominences are reviewed. We focus on non-eruptive prominences, and describe recent progress in four areas of prominence research: (1) magnetic structure deduced from observations and models, (2) the dynamics of prominence plasmas (formation and flows), (3) Magneto-hydrodynamic (MHD) waves in prominences and (4) the formation and large-scale patterns of the filament channels in which prominences are located. Finally, several outstanding issues in prominence research are discussed, along with observations and models required to resolve them.Comment: 75 pages, 31 pictures, review pape

    Cluster Density and the IMF

    Full text link
    Observed variations in the IMF are reviewed with an emphasis on environmental density. The remote field IMF studied in the LMC by several authors is clearly steeper than most cluster IMFs, which have slopes close to the Salpeter value. Local field regions of star formation, like Taurus, may have relatively steep IMFs too. Very dense and massive clusters, like super star clusters, could have flatter IMFs, or inner-truncated IMFs. We propose that these variations are the result of three distinct processes during star formation that affect the mass function in different ways depending on mass range. At solar to intermediate stellar masses, gas processes involving thermal pressure and supersonic turbulence determine the basic scale for stellar mass, starting with the observed pre-stellar condensations, and they define the mass function from several tenths to several solar masses. Brown dwarfs require extraordinarily high pressures for fragmentation from the gas, and presumably form inside the pre-stellar condensations during mutual collisions, secondary fragmentations, or in disks. High mass stars form in excess of the numbers expected from pure turbulent fragmentation as pre-stellar condensations coalesce and accrete with an enhanced gravitational cross section. Variations in the interaction rate, interaction strength, and accretion rate among the primary fragments formed by turbulence lead to variations in the relative proportions of brown dwarfs, solar to intermediate mass stars, and high mass stars.Comment: 14 pages, 3 figures, to be published in ``IMF@50: A Fest-Colloquium in honor of Edwin E. Salpeter,'' held at Abbazia di Spineto, Siena, Italy, May 16-20, 2004. Kluwer Academic Publishers; edited by E. Corbelli, F. Palla, and H. Zinnecke

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    A Randomized Trial of Prophylactic Antibiotics for Miscarriage Surgery.

    Get PDF
    BACKGROUND: Surgical intervention is needed in some cases of spontaneous abortion to remove retained products of conception. Antibiotic prophylaxis may reduce the risk of pelvic infection, which is an important complication of this surgery, particularly in low-resource countries. METHODS: We conducted a double-blind, placebo-controlled, randomized trial investigating whether antibiotic prophylaxis before surgery to complete a spontaneous abortion would reduce pelvic infection among women and adolescents in low-resource countries. We randomly assigned patients to a single preoperative dose of 400 mg of oral doxycycline and 400 mg of oral metronidazole or identical placebos. The primary outcome was pelvic infection within 14 days after surgery. Pelvic infection was defined by the presence of two or more of four clinical features (purulent vaginal discharge, pyrexia, uterine tenderness, and leukocytosis) or by the presence of one of these features and the clinically identified need to administer antibiotics. The definition of pelvic infection was changed before the unblinding of the data; the original strict definition was two or more of the clinical features, without reference to the administration of antibiotics. RESULTS: We enrolled 3412 patients in Malawi, Pakistan, Tanzania, and Uganda. A total of 1705 patients were assigned to receive antibiotics and 1707 to receive placebo. The risk of pelvic infection was 4.1% (68 of 1676 pregnancies) in the antibiotics group and 5.3% (90 of 1684 pregnancies) in the placebo group (risk ratio, 0.77; 95% confidence interval [CI], 0.56 to 1.04; P = 0.09). Pelvic infection according to original strict criteria was diagnosed in 1.5% (26 of 1700 pregnancies) and 2.6% (44 of 1704 pregnancies), respectively (risk ratio, 0.60; 95% CI, 0.37 to 0.96). There were no significant between-group differences in adverse events. CONCLUSIONS: Antibiotic prophylaxis before miscarriage surgery did not result in a significantly lower risk of pelvic infection, as defined by pragmatic broad criteria, than placebo. (Funded by the Medical Research Council and others; AIMS Current Controlled Trials number, ISRCTN97143849.)

    Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup: Comparison to Data (II)

    Get PDF
    Selected Nd breakup data over a wide energy range are compared to solutions of Faddeev equations based on modern high precision NN interactions alone and adding current three-nucleon force models. Unfortunately currently available data probe phase space regions for the final three nucleon momenta which are rather insensitive to 3NF effects as predicted by current models. Overall there is good to fair agreement between present day theory and experiment but also some cases exist with striking discrepancies. Regions in the phase space are suggested where large 3NF effects can be expected.Comment: 33 pages, 24 ps figures, 9 gif figure
    corecore