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Abstract We formulate a holomorphic theory of gravity and study how the holomor-
phy symmetry alters the two most important singular solutions of general relativity:
black holes and cosmology. We show that typical observers (freely) falling into a
holomorphic black hole do not encounter a curvature singularity. Likewise, typical
observers do not experience Big Bang singularity. Unlike Hermitian gravity (Mantz
and Prokopec in arXiv:0804.0213v1, 2008), holomorphic gravity does not respect the
reciprocity symmetry and thus it is mainly a toy model for a gravity theory formu-
lated on complex space-times. Yet it is a model that deserves a closer investigation
since in many aspects it resembles Hermitian gravity and yet calculations are simpler.
Our study of light bending and gravitational waves in weak holomorphic gravitational
fields strongly suggests that holomorphic gravity reduces to general relativity at large
distance scales.

Keywords Alternative gravity theories

1 Introduction

The existence of singularities in Einstein’s well tested theory of general relativity
have puzzled many physicists since their discovery. It is a goal of (and motivation for)
theories as quantum gravity to remove them. We propose generalizations of general
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relativity which to a great extent ease the singularity problems already at the clas-
sical level of the theory. Singularities of general relativity are typically manifest as
divergences of some curvature invariant and are ubiquitous in general relativity [2, 3].

Consider, for example, the Big Bang singularity. A universe undergoing a
power-law expansion expands with a scale factor, a ∼ t1/ε , where ε = −Ḣ/H 2 =
constant ≥ 0 denotes the ‘slow roll’ parameter, H = ȧ/a is the Hubble expansion
rate and dot denotes a derivative with respect to physical time t . The Ricci scalar R

then diverges as t → 0 (corresponding to the time when matter density diverges),

R = 6(2 − ε)H 2 = 6(2 − ε)

ε2t2
→ ∞ as t → 0. (1)

Analogously, the Schwarzschild metric is singular when the coordinate radius r =
‖�x‖ → 0 (corresponding to the place where all of the mass is concentrated), resulting
in the curvature singularity of the Riemann tensor,

Rμνρσ Rμνρσ = 48G2
NM2

c4r6
→ ∞, as r → 0, (2)

where M denotes the black hole mass, GN the Newton constant and c the speed of
light.

On complex manifolds space-time coordinates xμ get complexified as [1],1

xμ → zμ = xμ + iyμ, yμ ≡ GN

c3
pμ, (3)

where pμ denotes the momentum-energy part of an observer’s frame (e.g. of a test
particle) with respect to the underlying holomorphic space. For an observer whose
momentum coordinate pμ changes slowly along a geodesic, pμ reduces to the par-
ticle’s momentum-energy, pμ → muμ, where uμ = dxμ/dτ and τ denotes a proper
time. In this work the coordinate pμ is generally not equal to the familiar momentum-
energy vector of general relativity.2 Based on the holomorphy symmetry, we expect
that the singularities (1–2) appear as some power of

1

z
, (4)

(and possibly its complex conjugate), where z → z0 = x0 + iy0 = x0 + i(GN/c4)E

for the Big Bang singularity (1) and z → ‖�z‖ = ‖�x‖ + i‖�y‖ = ‖�x‖ + i(GN/c3)‖ �p‖
for the black hole singularity (2). Near singularities the observed space-time curvature
is typically proportional to a power of the real part of (4),

	
[

1

z

]
= x

x2 + y2
,

1For the sake of simplicity here we drop a factor 1/
√

2 which we used in Ref. [1] when relating zμ to xμ

and pμ.
2A more elaborate discussion of the physical meaning of the imaginary coordinate pμ and its low-energy
reduction to the momentum-energy four-vector of general relativity, is given in Sects. 10 and 4.
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which blows up only when both x and y are simultaneously zero. The aim is now
to formulate a generalization of general relativity that yields such complexified sin-
gularities and show that for a freely falling observer x and y are almost never zero
simultaneously.3 In Hermitian gravity [1], the Big Bang singularity can be consid-
ered as ‘resolved’ in the sense that the set of observers moving backwards in time
that encounter the Big Bang singularity is of measure zero. So typical observers do
not see the singularity. Note that this is not the case in general relativity, where all
backward-moving observers eventually hit the Big Bang singularity. In this paper we
present a new theory, holomorphic gravity, in which also typical observers falling into
a Schwarzschild black hole do not encounter a singularity. We believe that this reso-
lution of singularities is a generic feature of gravity theories formulated on complex
spaces as presented in this work and in Ref. [1], representing one of the principal
advantages of complex theories of gravity when compared with Einstein’s general
relativity. The idea of complexifying general relativity is an old one [4–10]. Yet the
possibility that the undelying space is eight-dimensional is quite recent [1, 11–13].
To our knowledge holomorphic gravity as formulated in this work has up to now not
been considered.

2 Almost Complex Structure

A natural generalization of general relativity, in order to obtain complex solutions
as (4), would be to consider a theory with complex metrics, living on complex mani-
folds. A general complex metric on a complex manifold is given by

C = Cμνdzμ ⊗ dzν + Cμν̄dzμ ⊗ dzν̄

+ Cμ̄νdzμ̄ ⊗ dzν + Cμ̄ν̄dzμ̄ ⊗ dzν̄, (5)

where barred indices zμ̄ ≡ z̄μ denote complex conjugation. Hermitian gravity [1] is
formulated on a Hermitian manifold endowed with a Hermitian metric, defined as
follows

Cp

(
JpZ,JpW

) = Cp (Z,W) , (6)

where the action of the almost complex structure operator, J , on the basis vectors of
the complexified tangent space is given by

Jp

(
∂

∂zμ

)
= i

∂

∂zμ
, Jp

(
∂

∂z̄μ

)
= −i

∂

∂z̄μ
. (7)

A Hermitian metric is a complex metric which has—as a consequence of the symme-
try requirement (6)—vanishing Cμν and Cμ̄ν̄ components:

C = Cμν̄dzμ ⊗ dzν̄ + Cμ̄νdzμ̄ ⊗ dzν.

3The meaning of ‘almost never’ is made more precise below.
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The requirement that the complex metric satisfies Bianchi identities lead us in [1] to
the conclusion that (6) can be consistently imposed on the metric only at the level of
the equations of motion (on-shell), while at the level of the action (off-shell) all com-
plex metrics of the form (5) are in fact allowed. Thus studying holomorphic gravity
allows one also to rectify the differences between the full complex theory (which,
apart from holomorphy on vielbeins, has no additional symmetry requirements) and
hermitian gravity.

One of the reasons why one wants to study a theory of gravity that is invariant
under the operation of J , is that the commutation relations of quantum mechanics
are invariant under its action, which seems an invitation for quantization (recall that
the yμ coordinate in (3) is identified with the momentum-energy coordinate, pμ, in
the commutation relations). Constructing a geometric theory of gravity on complex
manifolds which admits an almost complex structure operator is reminiscent by an
old idea of Max Born, according to which quantum theory of gravity should respect
a reciprocity symmetry [14, 15]; for a more modern implementation of Born’s idea
see [16, 17].

We can also consider the theory which is anti-symmetric under the action of the
almost complex structure operator, in the sense that the holomorphic metric is defined
in the following manner

Cp(JpZ,JpW) = −Cp (Z,W) . (8)

The holomorphic metric can then be written as

C = Cμνdzμ ⊗ dzν + Cμ̄ν̄dzμ̄ ⊗ dzν̄, (9)

where the component Cμν (Cμ̄ν̄ ) is (anti-)holomorphic, which simplifies calcula-
tions. In the remainder of this paper we construct a theory of gravity, based on the
holomorphic metric (9). In the flat space limit the holomorphic metric is invariant
under the complexified Lorentz group, SO(1,3;C), while the line element is invari-
ant under the complexified inhomogeneous Lorentz group (the complexified Poincaré
group) ISO(1,3;C).

3 The Holomorphic Metric

The holomorphic line element4 is defined in the following manner

ds2 = dzμCμνdzν + dzμ̄Cμ̄ν̄dzν̄ , (10)

4One could instead consider the line element ds2
c = Cμνdzμdzν , which is by definition left invariant

by the ISO(1,3,C) group. The reason why we present (10) as the line element is that this line element
corresponds to the observed proper length and hence extends general relativity in a more natural way than
ds2

c = Cμνdzμdzν . We find below that we need to analytically extend the proper time variable to uniquely
specify solutions to the geodesic equation. This analytic extension corresponds a complex proper time τ ,
which is exacted by ds2

c = Cμνdzμdzν ≡ −c2dτ2.
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which can be written in eight dimensional notation

ds2 = dzT · C · dz = (dzm)T Cmndzn

= (dzμ, dzμ̄)

(
Cμν 0

0 Cμ̄ν̄

)(
dzν

dzν̄

)
, (11)

where the Latin indices can take the values 0,1, . . . , d − 1, 0̄, 1̄, . . . , d − 1, the Greek
indices run in the range 0,1, . . . , d − 1 and d denotes the complex dimension of the
complex manifold. The entries of the metric Cmn are functions of holomorphic and
antiholomorphic vielbeins defined as follows5

Cμν = e(z) a
μ ηabe(z)

b
ν (12)

Cμ̄ν̄ = e(z̄) a
μ ηabe(z̄)

b
ν̄ .

The metric components are symmetric under transposition, since they are just an
inner product of the vielbein times its transpose. Hence also in eight dimensional
notation the metric is symmetric under transposition CT = C. We define the zμ and
zμ̄ coordinates in terms of xμ and yμ̌, such that we obtain 6

zμ = xμ + iyμ̌,
∂

∂zμ
= 1

2

(
∂

∂xμ
− i

∂

∂yμ̌

)

and their complex conjugates. This implies the following decomposition of complex
vielbeins in their real, eR

a
μ, and imaginary, eI

a
μ̌

, parts in the following manner

eμ
a = eR

μ
a + ieI

μ̌
a , e

μ
a = eμ̄

a = eR
μ
a − ieI

μ̌
a

ea
μ = eR

a
μ − ieI

a
μ̌
, ea

μ = ea
μ̄ = eR

a
μ + ieI

a
μ̌
.

(13)

Vielbeins are holomorphic functions, and thus transform as holomorphic vectors (we
consider only the transformation of the Greek indices for this purpose),

ea
μ(zν) → ẽa

μ(wν) = ∂zα(wν)

∂wμ
ea
α(zρ)

eμ
a (zν) → ẽ

μ
b (wν) = ∂wμ(zν)

∂zα
eα
b (zρ)

. (14)

The holomorphy of vielbeins,

∂

∂zμ̄
ea
ν = 1

2

[
∂

∂xμ
+ i

∂

∂yμ̌

]
[eR

a
ν + ieI

a
ν̌
] = 0,

5Here the Latin indices a, b run from 0,1, . . . , d − 1, since they represent local indices, and ημν =
diag(−1,1,1,1).
6Checks (ˇ) are put on indices to denote the imaginary part of a coordinate or on indices of objects, which
are projected onto their basis vectors.
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implies the Cauchy-Riemann equations,

∂eR
a
ν

∂xμ
= ∂eI

a
ν̌

∂yμ̌
,

∂eI
a
ν̌

∂xμ
= −∂eR

a
ν

∂yμ̌
. (15)

When rotating the metric from z and z̄ space to x and y space, the components of the
holomorphic rotated metric gmn are given by

gmn =
(

gμν gμν̌

gμ̌ν gμ̌ν̌

)
= 1

2

(
Cμν + Cμ̄ν̄ i(Cμν − Cμ̄ν̄)

i(Cμν − Cμ̄ν̄) −Cμν − Cμ̄ν̄

)
. (16)

Its inverse then becomes

gmn = 1

2

(
Cμν + Cμ̄ν̄ i(−Cμν + Cμ̄ν̄)

i(−Cμν + Cμ̄ν̄) −Cμν − Cμ̄ν̄

)
.

Clearly the entries of these rotated metrics are all symmetric and real. It is easily
verified that Cμν = gμν − iKμν and that Cμ̄ν̄ = gμν + iKμν , Kμν = gμν̌ = gμ̌ν is a
symmetric metric tensor and gμ̌ν̌ = −gμν . We can write the metric in terms of the
real and imaginary parts of the vielbein and in terms of the imaginary part of Cμν ,
using the definition of the complex metric in terms of vielbeins (12), yields

gmn =
(

eμeν − eμ̌eν̌ −eμ̌eν − eμeν̌

−eμ̌eν − eμeν̌ −eμeν + eμ̌eν̌

)
. (17)

Expressing the inverse metric gmn in terms of vielbeins yields
(

gμν Kμν

Kμν −gμν

)
=

(
eμeν − eμ̌eν̌ eμ̌eν + eμeν̌

eμ̌eν + eμeν̌ −eμeν + eμ̌eν̌

)
. (18)

With the rotated metric we can write down the holomorphic line element in its rotated
form

ds2 = gμνdxμdxν − 2GN

c3
Kμνdp

μdxν − G2
N

c6
gμνdp

μdpν. (19)

From the definition of the complex metric in terms of vielbeins (12) and the fact that
the vielbeins are defined to satisfy

eμ
a ea

ν = δμ
ν ,

it follows that gme and gen are inverses of each other

gmegen = δm
n ,

where δm
n is defined as

δm
n ≡

(
δ
μ
ν 0
0 δ

μ̄
ν̄

)
.
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4 Flat Space

The holomorphic line element (19) in flat space becomes

ds2 = −(cdt)2 + (d �x)2 − [−(dy0)2 + (d �y)2]. (20)

Note that, although it may seem that this metric is invariant under the action of the
SO(4,4), as already pointed out in Sect. 2 it is in fact invariant under the SO(1,3;C).
Indeed, the complexified Lorentz group is (by definition) the group which leaves the
holomorphic line element (9) invariant, and the invariance is not changed by rotating
to the x, y coordinates, where the y coordinate is related to the momentum-energy co-
ordinate [1, 17] (see also Sect. 10) by yμ ≡ pμGN/c3. The space-time-momentum-
energy interval squared from the origin to a space-time-momentum-energy point xm

is given by

d2 (
0;xm

) = −(ct)2 + (�x)2 − G2
N

c6

[
−

(
E

c

)2

+ ( �p)2
]
. (21)

Note that the contribution of momentum-energy to the line element multiplies
G2

N/c6, which is tiny (G2
N/c6 ∼ 10−72 s2/kg2), as it should be, since one does not

observe any momentum-energy contribution to (21) at low energies. For light-like
propagation (ds2 = 0) and in the absence of momentum-energy contribution, (21)
reduces to the well known result: massless particles move on the light-cone with the
speed of light, v = ‖d �x/dt‖ = c.

On the other hand, for a light-like propagation in the presence of a non-vanishing
momentum-energy contributions however, (21) yields,

−(ct)2 + (�x)2 − p2G2
N

c6
= 0, (22)

where the variable p2 = ημνp
μpν is the momentum-energy squared in a space-time-

momentum-energy hyper-surface. Setting the space-time-momentum-energy interval
to zero determines the boundary of causality (light cones). We can specify our hyper-
surface further by setting t to zero. Assuming p2 > 0, one finds that there is a spatial
region which is in instantaneous causal contact, and whose radius is given by,

rmax = GN

√
p2

c3
(p2 > 0).

The causally related regions (time-like, ds2 < 0) for the case p2 > 0 are shown as
white in Fig. 1, where the region of non-local causal contact at t = 0 is clearly seen
as the hyperbola’s throat. On the other hand, when p2 < 0, the causal boundaries,
shown in Fig. 2, are quite different. There is a minimal time tmin required for events
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Fig. 1 The figure shows how
the light cones get modified by
non inertial coordinate
transformations on a
space-time-momentum-energy
diagram in the case when
p2 > 0. Note that there is a
non-local instantaneous causally
related volume element near the
origin

Fig. 2 The figure shows how
the light cones get modified by
non-inertial coordinate
transformations when p2 < 0.
There is a minimum time
interval required for events to be
in causal contact

to be in causal contact,

tmin = GN

√−p2

c4
(p2 < 0).
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We now calculate the phase velocity, using the space-time-momentum-energy line
element (22)

vphase = x

t
=

√
c2 + p2G2

N

c4t2
. (23)

One can see that the phase velocity approaches the speed of light for large t .
On the other hand, the group velocity becomes

vg =
√

c2 + G2
N

c6
f 2, (24)

where

f 2 = − 1

c2

(
dE

dt

)2

+
(

d �p
dt

)2

.

The group velocity approaches the speed of light for small four-forces squared. For
small four-forces the group velocity (24) can be expanded as

vg � c
[
1 + 3.4 × 10−89 kg−2 m−2 s4 f 2

]
. (25)

From this we see that the four-forces need to be immense to cause any significant de-
viation of vg from c. For example, for f 2 � ημνf

μf ν of the order of f 2 � (1038N)2

we get a deviation |vg −c| � 10−4 m/s. This deviation is comparable with the current
experimental bounds [18] (see also Refs. [19, 20] which report more stringent tests).
By making use of a laser version of the Kennedy-Thorndyke experiment (an im-
proved version of the Michelson-Morley experiment originally designed to measure
the effects of the luminiferous aether through which the Earth presumably moves),
Hils and Hall have tested the universality of the speed of light in free space c up to
an accuracy of 6 × 10−5 m/s, comparable to the deviation mentioned above. Un-
less one faces conditions of extremely large four-forces, holomorphic gravity de-
scribes the speed of light in free space extremely well. Such strong four-forces could
be present only in strong gravitational fields, e.g. close to the black hole and Big
Bang singularities. However, general relativity in strong gravitational fields has up
to now not been tested. It would be of interest do design a thought experiment,
in which physical processes in a strong gravitational field could have an observa-
tional impact on an asymptotic observer placed in a weak field. Such candidates
could be accretion disks of large rotating black holes in the presence of strong
magnetic fields, which are present for example in the vicinity of active galactic nu-
clei.

Requiring that vg in (24) be real and positive (as required by propagation) sets a
lower limit on the four force, f 2 ≥ −c8/G2

N . This is to be contrasted with an upper
limit occurring in Hermitian gravity [1]. Just like in the case of Hermitian gravity,
we expect that these apparent violations of causality become of importance only in
the regions where the particle’s self-gravity is large (in the vicinity of particle’s own
event horizon).
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5 Second Order Formalism

Let us now state the holomorphic Einstein-Hilbert action,7

S = c4

16πGN

∫
d8z

√−CR + c.c. (26)

The holomorphic Ricci scalar is defined by R = CμνRμν , where the holomorphic
Ricci tensor is given by

Rλ
μλν = ∂λ

λ
νμ − ∂ν

λ
λμ + λ

λαα
νμ − λ

ναα
λμ, (27)

and where here ∂λ = ∂/∂zλ. Since the holomorphic Einstein-Hilbert action is just the
complexified equivalent of the Einstein-Hilbert action of standard general relativity,
the equations of motions for this theory are just complexified equivalents of the equa-
tions of motions of general relativity. Using first order formalism [21], the equations
of motion implied by the action (26) are:

Gμν = 8πGN

c4
Tμν, (28a)

∇ρCμν = 0. (28b)

Through the holomorphic metric compatibility equations (28b) the holomorphic con-
nection coefficients are given by

ρ
μν = 1

2
Cρε(∂μCεν + ∂νCμε − ∂εCμν). (29)

Plugging the holomorphic Levi-Cività connection coefficients into the holomorphic
Einstein’s equations (28a), we obtain second order differential equations in terms of
the holomorphic metric only.

When varying the single particle action S = −m
∫

ds + h.c. where ds is the holo-
morphic line element (11) we obtain the following holomorphic geodesic equations

z̈ρ + ρ
μνż

μżν = 0 (30)

and its complex conjugate. We can write equations (30) in their convenient eight di-
mensional form, such that we can rotate them to x, y space, by simply plugging in the
rotated metric (18). This is possible because the holomorphic connection coefficients
transform as a (1,2) tensor under the constant coordinate transformations such as ro-
tations from z, z̄ to x, y space. The rotated eight dimensional connection coefficients
are then simply given by

�r
mn = 1

2
gre(∂mgen + ∂ngme − ∂egmn), (31)

7In contrast to Hermitian gravity [1], the holomorphy symmetry of the metric tensor of holomorphic
gravity can be imposed both on- and off-shell (at the level of the action). This has the advantage that the
action (26) suffices to fully specify the dynamics of holomorphic gravity, and no further (action) constraints
are needed. Furthermore, it can be easily shown that the Bianchi identities and the covariant stress-energy
conservation are satisfied.
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where the metric gmn is just the eight dimensional rotated metric (16).
At a first sight, the geodesic equation (30) is a rather strange generalization of

general relativity, in that it requires twice as many initial conditions to fully specify
the geodesic motion of a particle. We shall now provide a plausible physical meaning
for all initial conditions, and explain how they reduce to the standard initial conditions
of general relativity. In holomorphic gravity there are in total 16 initial conditions,
namely:

(xμ)0; (uμ)0 =
(

dxμ

dτ

)
0

(pμ)0; (f μ)0 =
(

dpμ

dτ

)
0
.

(32)

These conditions reduce to the initial conditions of general relativity when the fol-
lowing on-shell condition (see also Sect. 10) is satisfied

pμ = muμ (on-shell), (33)

where m denotes particle’s mass, but we emphasise that the initial conditions (32)
do not require or imply (33). When particle’s mass vanishes, the on-shell condition
becomes ν = c‖�k‖, with p0 = �ν/c, pi = �ki , where � denotes the reduced Planck
constant, ν particle’s frequency and �k its wavenumber. From (33) and the geodesic
equation (30) we also know the 4-force

f μ = dpμ

dτ
= m

duμ

dτ
= −m	[μ

αβ żαżβ ] (on-shell),

(34)

where żα = uα + i(GN/c3)f α . This gives an algebraic equation for f μ. Together
with (33), this equation completely defines the on-shell initial conditions.

However, in general neither (33) nor (34) is fulfilled. Just like for a quantum parti-
cle (recall the phase space representation of a coherent state), in holomorphic gravity
there is no direct relation between particle’s momentum and the rate of change of its
position (velocity), and thus to fully specify particle’s motion in holomorphic gravity,
one needs all of the initial conditions (32).

Complete ramifications of these considerations can be appreciated only within a
quantum theory of gravity, which shall be considered in a future publication within
the context of a hermitian theory of gravity (cf. Ref. [1]).

6 The Limit to General Relativity

The limit of Holomorphic gravity to general relativity is based on the assumption
that the y coordinate and its corresponding vielbein are small. When expanding the
equations of holomorphic gravity in powers of y and its corresponding vielbein, we
hope to obtain the theory of general relativity at zeroth order of the expansion and
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meaningful corrections at linear order. The easiest way to obtain the limit to general
relativity is to expand the vielbeins in terms of the y coordinate

ea
μ(x, y) = eiy·∂x ea

μ(x). (35)

From this and the definition, Cμν = eμ(z) · eν(z), we conclude that the analogous for-
mula holds for the holomorphic metric tensor, Cμν(x, y) = eiy·∂x Cμν(x), such that,

gμν(x, y) = cos (y · ∂x) gμν(x) + sin (y · ∂x)Kμν(x)

Kμν(x, y) = − sin (y · ∂x) gμν(x) + cos (y · ∂x)Kμν(x),
(36)

where we made use of (16) and (18). The analogous relations hold for the inverses
gμν and Kμν . Assuming that Kμν is—just like yμ—a first order quantity, (36) then
tells us that gμν(x, y) acquires corrections at second order in y, while Kμν(x, y)

acquires first order corrections in y, with Kμν being on its own a first order quantity.
This analysis then implies that the connection with all indices unchecked yields

the ordinary Levi-Cività connection plus corrections of second order

ρ
μν(x, y) = ρ

μν(x) + O(y2).

With these connection coefficients, we can know check if the theory reduces to the
theory of general relativity by plugging them into the rotated eight dimensional
geodesic equation. Keeping only terms of linear order in the y coordinate and its
corresponding vielbein, yields the ordinary geodesic equation

ẍρ + ρ
μν(x)ẋμẋν + O(y2) = 0

without any first order corrections present. We have not studied in detail the reduction
of holomorphic Einstein’s equations to general relativity. Our study of holomorphic
Schwarzschild solution and cosmology in Sects. 7 and 9 suggests however that holo-
morphic gravity reduces to Einstein’s theory in the low energy limit.

6.1 Scalar Field

In this subsection we consider the following scalar field action

Sφ =
∫

d8z
√−C

[
−1

2
Cμν(∇μφ)∇νφ − V (φ)

]
+ c.c.,

(37)

where φ = φ(zμ) is a holomorphic function of zμ. The equations of motion for the
scalar field are then

�φ − dV

dφ
= 0 (38)

and its complex conjugate, where � = Cμν∇μ∇ν and � = Cμ̄ν̄∇μ̄∇ν̄ . When varying
this action with respect to the metric we obtain the two sets of components of the
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stress-energy tensor

Tαβ = ∇αφ∇βφ − 1

2
CαβCμν∇μφ∇νφ − CαβV (φ) (39)

and its complex conjugate. The energy conservation equations are

∇μT μν =
(

�φ − dV

dφ

)
∇νφ = 0

and its complex conjugate, where we have used (38). There are two sets of Einstein’s
equations, namely

Rμν = 8πGN

c4

(∇μφ∇νφ + CμνV (φ)
)

(40)

and again its complex conjugate. The energy-momentum tensor of a perfect fluid in
the fluid rest frame can be written in the diagonal form

T μ
ν = diag(−ρ,p,p,p) (41)

plus its complex conjugate, where ρ is the density and p the pressure. For a ho-
mogeneous scalar field φ = φ(t), (39) yields, ρ = (1/2c2)φ̇2 + V (φ) and p =
(1/2c2)φ̇2 − V (φ).

7 The Holomorphic Schwarzschild Solution

The holomorphic Schwarzschild solution should just be a complexified version of the
ordinary Schwarzschild solution, since the holomorphic Einstein’s equations (28a)
are just complexified versions of the ordinary Einstein’s equations. So we expect to
have the holomorphic metric components

C00 = −
(

1 − 1

c2

2GNM

z

)
, (42)

C11 =
(

1 − 1

c2

2GNM

z

)−1

(43)

and their complex conjugates, where z = ‖�z‖ = ‖�x‖ + i
GN

c3 ‖ �p‖ ≡ r + i
GN

c3 p and M

is the mass of the black hole, which in holomorphic gravity could, in principle, be
complex.8 The angular part takes the same form as in general relativity

d�2 = dθ2 + sin2θdφ2, (44)

8At this moment we do not have a good physical interpretation for �[M]. In this paper we take M to be
real.
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but now the spherical symmetry is O(3;C) and thus the angular parameters are com-
plex

θ = θR + iθI φ = φR + iφI .

Thus the angular part of the holomorphic Schwarzschild solutions is the complex an-
gular part (44) plus its complex conjugate. One can easily check that the holomorphic
Schwarzschild solution is indeed a solution to the holomorphic Einstein’s equations
(28a) in vacuüm. Expressing the Schwarzschild components (43) in r and p yields

C00 = −
(

1 − 2GNM

c2

r − i
GN

c3 p

r2 + G2
N

c6 p2

)

C11 = r2 + G2
N

c6 p2 − 2GNM

c2 (r + i
GN

c3 p)

(r − 2GNM

c2 )2 + G2
N

c6 p2
= − 1

C00

(45)

and their complex conjugates. The rotated holomorphic metric components (16) are
given in terms of the holomorphic metric components (45), and take the following
form

g00 = −
(

1 − 2GNM

c2

r

r2 + G2
N

c6 p2

)
, (46a)

g11 = r2 + G2
N

c6 p2 − 2GNM

c2 r

(r − 2GNM

c2 )2 + G2
N

c6 p2
, (46b)

g00̌ =
2G2

NM

c5 p

r2 + G2
N

c6 p2
, (46c)

g11̌ =
2G2

NM

c5 p

(r − 2GNM

c2 )2 + G2
N

c6 p2
, (46d)

which reduces to the Schwarzschild solution of general relativity when p → 0. When
these rotated components are inserted into the rotated holomorphic line element (19),
one obtains the holomorphic Schwarzschild metric in its full glory

ds2 = −
(

1 − 2GNM

c2

r

r2 + G2
N

c6 p2

)[
(cdt)2 − G2

N

c8 (dE)2
]

+ r2 + G2
N

c6 p2 − 2GNM

c2 r

(r − 2GNM

c2 )2 + G2
N

c6 p2

[
(dr)2 − G2

N

c6
(dp)2

]
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+
2G2

NM

c5 p

(r − 2GNM

c2 )2 + G2
N

c6 p2

2GN

c3
drdp

+
2G2

NM

c5 p

r2 + G2
N

c6 p2

2GN

c4
dtdE +

(
r2 − G2

N

c6
p2

)
(dθR

2 − dθI
2)

− 4
GN

c3
rpdθRdθI + (dφR

2 − dφI
2)

×
[(

r2 − G2
N

c6
p2

)
{(sinθRcoshθI )

2 − (cosθRsinhθI )
2}

− 4
GN

c3
rp(sinθRcoshθI cosθRsinhθI )

]

− 2dφRdφI

[(
r2 − G2

N

c6
p2

)
2sinθRcoshθI cosθRsinhθI

+ 2
GN

c3
rp{(sinθRcoshθI )

2 − (cosθRsinhθI )
2}

]
.

This rotated holomorphic Schwarzschild metric is indeed a solution of the rotated
holomorphic Einstein’s equations in vacuüm, as can be checked by explicit calcu-
lation of Rμν . It is easy to see that, in the limit when the radius r goes to infinity
and p to zero, the solution approaches the Minkowski metric, whereas the solution
approaches the momentum-energy Minkowski space when r goes to zero and p goes
to infinity.

7.1 Curvature Singularities

If p is not zero when r is zero, there is no curvature singularity at the origin. Explicit
calculation shows that p is not zero when r is zero for a generic infalling observer.
When considering an observer which is falling in radially we can neglect the change
in angular coordinates, corresponding to a vanishing angular momentum. (Recall that
in general relativity this choice corresponds to the worst case scenario, for which an
observer descends in the quickest possible way towards the black hole singularity.)
Based on the holomorphic Schwarzschild metric (43) the black hole line element (10)
of a radially infalling observer can be recast as

−2c2 = −
(

1 − 1

c2

2GNM

z

)(
dz0

dτ

)2

+
(

1 − 1

c2

2GNM

z

)−1 (
dz

dτ

)2

+ c.c., (47)

where we introduced a real affine parameter (proper time) τ defined as c2(dτ)2 =
−ds2. The holomorphic Schwarzschild solution has an isometry in the z0 direction
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(∂/∂z0 is a Killing vector) and hence there is a conserved quantity:

ez = u0
0 + i

GN

c3
f 0

0 . (48)

The real part u0
0 = u0(τ0) corresponds to the (initial) zeroth component of the four-

velocity evaluated at τ = τ0 (the energy per unit mass divided by c), which is also
the Killing vector in general relativity, while the imaginary part f 0

0 = f 0(τ0) =
(dp0/dτ)(τ0) is the zeroth component of the observer’s four-force. Since f 0

0 does
not contribute in general relativity, the general relativistic limit should be obtained
by setting f 0

0 → 0, which is indeed the case. In analogy with general relativity, the
conserved quantity can be written as [3]

(
dz0

dτ

)2

=
(

1 − 1

c2

2GNM

z

)−2

e2
z . (49)

Equations (47) and (49) are not enough to fully determine z = z(τ ), because noth-
ing is known about the imaginary part of the expressions appearing in (47). Since we
are in holomorphic gravity, it is reasonable to demand z = z(τ ) to be a holomorphic
function. With this analytic extension we can now completely determine z = z(τ ) by
inserting the conserved integral (49) into (47), to obtain

(
dz

cdτ

)2

= b + rs

z
, b = e2

z

c2
− 1, rs = 2GNM

c2
(50)

and the complex conjugate of this equation. Note that rs is just the Schwarzschild
radius and the on-shell value of b = br + ibi can be expressed in terms of the initial
3-velocity, br = γ 2

0 −1 = (γ0�v0/c)
2, γ −2

0 = 1− (�v0/c)
2. Solving (50) for proper time

τ yields

cτ

rs
= 1

b

√
ζ(1 + bζ )

− 1

b
3
2

ln
{√

bζ + √
1 + bζ

}
, ζ = z

rs
.

From this it follows that, when b is complex and r → 0, p is not zero. Moreover,
one can show that quite generically, when r → 0, p grows large, which limits the
growth of the curvature invariant (2), which for Holomorphic gravity has the simple
generalization,

Rμνρσ Rμνρσ = 12r2
s

z6
. (51)

For example, when r → 0, this reduces to Rμνρσ Rμνρσ → −12c18r2
s /(GNp)6,

which is negative.
In order to verify the limited curvature conjecture, we solve (50) numerically.

For initial conditions, where the imaginary part of b is nonvanishing, p is indeed
nonzero when r = 0, as can be seen from Fig. 3(a). In this case there is no curvature
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Fig. 3 The real and imaginary
part and the absolute value of
the complex radial coordinate z

as a function of proper time τ

for a freely falling observer for
different initial conditions b.
(a) The real and imaginary part
and the absolute value of z with
a complex initial condition b. In
this case |z| = 0 is never
reached, indicating that the
observer encounters no black
hole singularity. (b) The real and
imaginary part and the absolute
value of z for a real initial b. In
this case both 	[z] and �[z]
reach simultaneously zero for
some value of proper time τ ,
indicating a black hole
singularity.

singularity. When �[b] = 0 however, then r and p simultaneously go to zero, the
geodesics end at a curvature singularity, just like in the case of general relativity. This
situation is illustrated in Fig. 3(b). Even though numerical solution indicates that the
evolution continues after r = 0 = p is reached, at that point there is a branch point
of the evolution, and the numerical integrator picks one of the Riemann sheets (this
is indicated by the cuspy feature of the numerical solution at r = p = 0 in Fig. 3(b)).
Moreover, at r = 0 = p the curvature invariant (51) becomes singular, as can be
seen in Fig. 5. Since �[b] = 0 only when the initial force f 0

0 = 0 exactly, the set of
initial conditions where b is real is of measure zero, when compared to the set of all
initial conditions, where b can be an arbitrary complex number. Hence we conclude
that the curvature singularity is not seen by most of infalling observers. The above
observations are made within the coordinate choice, which maximize the Kretchmann
invariant (51) when r = 0 and p = 0.

Finally, we need to interpret what it means for r to become negative, see Fig. 3. In
the view of (50), for instance, we can take the sign out of the denominator and put it
in the numerator

M

−r + i(GN/c3)p
= −M

r − i(GN/c3)p
. (52)

In this way we effectively glue the holomorphic Schwarzschild solution with a neg-
ative 	[z] onto the anti-holomorphic solution with a positive 	[z] but with a nega-
tive mass: a white hole. This means that an observer can fall through a black hole
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Fig. 4 The real and imaginary part and the absolute value of the curvature invariant (51), which we for
simplicity denote in figures by R2. as a function of proper time τ for different initial conditions b. An
infinite curvature is attained only when �[b] = 0, which represents a set of initial conditions of measure
zero. (a) The real and imaginary part and the absolute value of the curvature invariant for complex initial
conditions b. The curvature invariant remains finite at all times. (b) A part of the upper panel (a) zoomed
in. At large distances the real part of the curvature invariant (solid black line) approaches the general
relativistic solution, but close to and within the Schwarzschild radius the curvature exhibits a very different
behavior, becoming even negative. The deviation from the general relativistic behavior becomes large only
within the Schwarzschild radius and hence remains hidden behind the black hole horizon.

and emerge from a white hole with an opposite momentum and v.v. Needless to say,
this behavior is very different from general relativity, where classically nothing can
come out once inside the event horizon. Finally, we note that the holomorphic and
anti-holomorphic solutions are in general not symmetric under time reversal. This
symmetry is broken, for example, by the imaginary part of the curvature invariant, as
can be seen in Fig. 4(a).

7.2 The Weak Field limit and Light Deflection

The weak field (Newtonian) limit of general relativity tells us that the Newtonian
potential φN is related to the metric as follows

g00 = −
(

1 + 2φ

c2

)
. (53)
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Fig. 5 The real and imaginary
part and the absolute value of
the curvature invariant (51) with
initial conditions corresponding
to a real b (vanishing initial
force). Since �[z] = 0 remains
zero, the curvature invariant is
identical to the corresponding
curvature invariant in general
relativity (1) such that a
curvature singularity is reached
at r = 0 = p

Solving for the Newtonian potential, using the expression for the metric compo-
nent (46a), yields the standard Newtonian potential plus a small correction

φ = −GNM
r

r2 + G2
N

c2 p2
� −GNM

r

[
1 − G2

Np2

c6r2

]
. (54)

That this correction is indeed small can be seen by rewriting the relative correction
in (54) as,

G2
Np2

c6r2
= p2

p2
P

�2
P

r2
, (55)

where pP = √
�c3/GN � 1.2 × 1019 GeV/c and �P = √

�GN/c3 � 1.6 × 10−35 m
denote the Planck momentum and the Planck length, respectively. Thus for a particle
of Planck energy the ‘post-Newtonian’ correction is significant only up to distances
of the order the Planck length, hence unobservably small.

If we would like to know how light gets deflected around a massive object, it is
necessary to consider holomorphic Maxwell fields. The action is in eight dimensional
notation given by

SM = −
∫

d8z

(
1

4
CmnCm′n′

Fmm′F nn′ + e

c2
CmnAmJ n

)
,

which is in four dimensional notation given by

SM = −
∫

d8z

(
1

4c
CμνCμ′ν′

Fμμ′Fνν′ + e

c2
CμνAμJν + c.c.

)
,

where e and Jν = Jν(z
α) denote the electromagnetic current and electric charge,

respectively. The holomorphic Maxwell field strength is given by

Fμν = ∇μAν − ∇νAμ = ∂μAν − ∂νAμ.
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Notice that the components of the vector field Aμ are holomorphic functions
Aμ = Aμ(zγ ). Varying the holomorphic Maxwell action yields the equation of mo-
tion

∇μ∇μAν − ∇ν∇μAμ − Rν
μAμ = e

c
J ν. (56)

To get the last two terms on the l.h.s. we made use of

∇μ∇νAμ = ∇ν∇μAμ + Rν
μAμ,

which is obtained by contracting the standard identity, [∇μ,∇ν]Aρ = Rσ
ρνμAσ .

Working in a covariant Lorenz gauge ∇μAμ = 0, (56) become

�Aν − Rν
μAμ = e

c
J ν, ∇μAμ = 0, (57)

where � = Cμν∇μ∇ν denotes the holomorphic d’Alembertian operator. Since in the
holomorphic Schwarzschild space-time the Ricci tensor vanishes, Rν

μ = 0, (57) im-
plies that the polarization of light does not affect its propagation. This shows that, just
like in general relativity, light deflection in the Schwarzschild holomorphic space-
time can be studied via the geodesic equation for massless point-like particles (30),
which is what we do next.

To linear order in the (holomorphic) potential � = �(�z) the holomorphic metric
(cf. (43)) reads

Cμν = ημν + 2

c2
�δμν + O(�2),

where δμν = ημν + 2δ0
μδ0

ν is the unity matrix (Kronecker delta). When the potential
is sourced by a static point particle of a mass M , then (43))

� = −GNM

z
. (58)

Similarly the Levi-Cività connection (29) reads,

α
μν = ηαβ

c2

(
δβν∂μ + δμβ∂ν − δμν∂β

)
� + O(�2),

whose nonvanishing components are,

i
00 = 0

i0 = 0
0i = − 1

c2
∂i�

k
ij = 1

c2

(
δk
i ∂j + δk

j ∂i − δij ∂k

)
�.

(59)

For a photon the zeroth order geodesic equation (in the absence of gravitational field)
tells us simply that the photon is moving with the speed of light, u0 = ‖�u‖ = c and

that the velocity four vector uμ(0) is null, ημνu
μ(0)uν(0) = 0. Here u0 = dz0(0)

/dτ
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and ui = dzi (0)
/dτ and uμ = uμ(0) + δuμ. From (30) and (59) we easily get the

geodesic equations for δuμ accurate to the first order in �,

dδu0

dτ
� 2

c
�u(0) · ∇�,

dδ�u
dτ

� 2∇⊥�, (60)

where ∇⊥ = ∇ − �u(0)(�u(0) · ∇) denotes the holomorphic derivative in the direction
orthogonal to the photon motion. Introducing a proper length � = cτ , the second
equation in (60) can be integrated once to get δ�u = (2/c)

∫
d�∇⊥�. Dividing this

by the speed of propagation c along the (complex) path �, one gets the holomorphic
deflection angle,

�αh = 2

c2

∫
d�∇⊥�. (61)

Just like in the example where we solved the geodesic equation for a particle freely
falling onto a black hole, we have analytically extended the solution to the geodesic
equation δ�u(�) by complexifying the path �. As an example we now solve (61) for
the potential of a static point like particle (58) to obtain

αh = −4GNM

c2z1
, (62)

where z1 denotes the closest ‘distance’ (impact parameter) to the lens located at �z = 0.
In evaluating the integral in (61) we have, for simplicity, assumed that both the ob-
server and the photon source are very distant from the lense. The physical deflection
angle is obtained by rotating (62). The result is

α = − 4GNMx1

c2x2
1 + G2

Np2
1/c

4
� −4GNM

c2x1

(
1 − G2

Np2
1

c6x2
1

)
. (63)

Comparing this with (55) we see that the correction to α induced by holomorphic
gravity is indeed unobservably small. We have thus shown that, up to a small rela-
tive correction of the form (55), holomorphic gravity reproduces correctly both the
Newton law for slow massive bodies and the Einstein’s light deflection formula.

8 Gravitational Waves

Holomorphic gravity is very similar to general relativity. This is also the case for
gravitational waves, since holomorphic gravity has a similar structure of degrees of
freedom, except that it hosts complex instead of real degrees of freedom. Hence here
we present the main steps in the derivation, which is carried through by similar rea-
soning as in general relativity. We consider weak gravitational fields, which allow
us to decompose the holomorphic metric into the flat Minkowsi metric plus a small
perturbation.

Cμν = ημν + hμν, (64)
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where the metric perturbation is a holomorphic function, which under infinitezimal
coordinate transformations, xγ → xγ + ξγ , transforms as follows

hμν → hμν + ∂μξν + ∂νξμ, (65)

where ξμ = ξμ(zγ ) are holomorphic functions. To linear order in hμν the connection
coefficients read,

ρ
μν = 1

2
ηρλ(∂μhνλ + ∂νhλμ − ∂λhμν). (66)

With these connections coefficients the linearized vacuum Einstein’s equations be-
come

Gμν = 1

2
(∂σ ∂νh

σ
μ + ∂σ ∂μhσ

ν − ∂μ∂νh − �hμν (67)

−ημν∂ρ∂λh
ρλ + ημν�h) = 0, (68)

where � = ηρσ ∂ρ∂σ .
We consider transverse traceless gauge, which can be fixed by constraining ξν

in (65) as follows [22],

�∂2�ξ + 1

3
�∂(�∂ · �ξ) = 0, (69a)

�∂2ξ0 − ∂0(�∂ · �ξ) = 0. (69b)

These gauge contraints imply

�∇ · s = 0 sij = 1

2
hij − 1

6
ηklhklηij (70a)

�∇ · �w = 0, wi = h0i , (70b)

as can be checked by using the transformation of the metric perturbation (65). Upon
fixing the transverse gauge and demanding well behaved boundary conditions and
taking into account holomorphicity of the metric perturbations, we are left with the
(transverse, traceless) ij components of Einsteins equations (68), which can be writ-
ten as the wave equation,

�hT T
μν = 0, (71)

where hT T
μ0 = 0, hT T

ij = 2sij . From (69) we see that hT T
μν contains two complex de-

grees of freedom, which are the physical degrees of freedom, and which as usually
can be represented by the + and × polarizations.

The general solution of (71) in the wave zone (in which gravitational waves prop-
agate radially and respect spherical symmetry) can be written in terms of the outward
(right, R) and inward (left, L) moving waves as follows,

hT T
μν (z0, z) =

∑
α=+,×

hα,R
μν (z0 − z) + hα,L

μν (z0 + z), (72)
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where z = ‖�z‖ and hα,R
μν and hα,L

μν are (arbitrary) holomorphic functions of its ar-
gument. Notice that, because of holomorphy, the number of physical gravitational
degrees of freedom (two) is the same in holomorphic gravity as in general relativity.
The observed wave is, as usually, obtained by rotating (72) (cf. (16)),

hT T
μν |obs = 1

2

(
hT T

μν (z0, z) + hT T
μ̄ν̄ (z0̄, z̄)

)
. (73)

Because of the holomorphy symmetry the off-diagonal components of the metric ten-
sor Kμν can be obtained as the analytic extension of hT T

μν |obs and hence do not contain
any new physical information. Moreover, as can be seen from (19), Kμν couples to
(GN/c3)dpμdxν , implying that the contribution of Kμν to distance measurements
(as performed by gravitational wave observatories) is suppressed by GN/c3, and thus
negligibly small for small energies and momenta. Furthermore, in the low energy
regime, where (36) applies, (72) can be expanded in powers of pμ as,

hT T
μν |obs = 1

2

(
hT T

μν (x0, r) + hT T
μ̄ν̄ (x0, r)

)

+ O
(

GNE

c4
,
GNp

c3

)
, (r = ‖�x‖, x0 = ct), (74)

which, to leading order in GNE/c4 and GNp/c3, agrees with general relativity. In-
deed, typical gravitational waves from astrophysical sources have wavelengths larger
than a meter, such that ‖pμ‖ � (c3/GN)‖∂μ‖−1, where ‖∂μ‖−1 > 1 m denotes the
length scale over which hT T

μν varies significantly.
A gravitational wave moving in x3 direction with a definite polarization (say

h+ in (72)) will result in an invariant (observable) change in the distance �L1 =∫ L0
0 (ds−ds0) along the x1 direction, where ds0 denotes the unperturbed (Minkowski)

line element. Integrating ds in (10) and keeping only the linear terms in h+ ≡ h+
11

one obtains,

�L1 = L0
1

2
	[h+] − GN

c3
p1�[h+], (75)

where p1 denotes the space-time momentum. As discussed above, it is reasonable to
take this to be the on-shell momentum of particles in the wave, p1 = �k1, where k1

is the wave vector in the x1 direction. Since the typical gravitational wave vectors
are k = 2π/λ, with λ greater than about a meter (corresponding to the shortest wave-
length measured by earthly experiments) the latter contribution in (75) for a meter
wave is of the order GNh/(c3λ) ∼ 10−69 m, which, when multiplied by �[h+] � 1,
results in an unobservably small correction to the first term in (75).

It is also of interest to consider the energy carried by the gravitational wave (72).
Analytic extension of the well known formula from general relativity suggests that
the (complex) Hamiltonian density corresponding to gravitational waves on flat space
is,

Hgw = 1

64πGN

[
ḣT T

μν ḣμνT T +
3∑

i=1

(∂zi hT T
μν )(∂zi hμνT T )

]
. (76)
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This result can be also obtained by varying the quadratic action in small perturba-
tions hμν = Cμν − Cb

μν with respect to the background metric Cb
μν , and then setting

Cb
μν = ημν . The (observable) energy density carried by gravitational waves corre-

sponds to the real part of (76):

ρgw = 	[Hgw] = 1

32πGN

∑
α=+,×

[(ḣα,R)2
r − (ḣα,R)2

i ], (77)

where we dropped the left moving wave in (72) and we made use of,

hT T
μν =

∑
α=+,×

εα
μν(h

α,R
r + ıh

α,R
i ), εα

μνε
μνβ = δαβ. (78)

Now since the imaginary contribution to the metric sourcing gravitational waves is
typically suppressed by (GN/c3)p/r with respect to the real part of the metric (see,
for example, (45)), we expect that the same suppression carries over to the gener-
ated gravitational waves. Hence, for sub-Planckian energies we expect ‖ḣα

r ‖ � ‖ḣα
i ‖,

implying the positivity of energy (77) carried by gravitational waves, and thus the
absence of ghosts. One might be tempted to conclude that the negative sign of the
second term in (77) indicates that term can grow in magnitude without limits, lead-
ing to an energy unbounded from below, and thus ruling out the theory in question.
Theories with such a behaviour are said to contain a ghost field. Ghost fields are
present in certain complexified theories of general relativity [23, 24], making them
thus unacceptable on physical grounds. Yet there is no ghost in holomorphic gravity
simply because holomorphy is a stronger principle than the principle of energy min-
imization.9 An alternative way of resolving the ghost problem has been proposed by
extending general relativity to pseudocomplex spaces [25, 26].

9 Cosmology

Since our Universe is isotropic and homogeneous on large scales, our complex gen-
eralized theory should also possess isotropy and homogeneity such that it reduces to
the theory of general relativity correctly at low energies. Since our complex theories
are completely specified in terms of vielbeins, an assumption concerning the viel-
bein modeling an isotropic and homogeneous universe is in place here. Let us try the
following Ansatz:

ea
μ(z) = a(z0

c)δ
a
μ ea

μ̄(z̄) = ā
(
zc

0̄)δa
μ̄, (79)

where

a(z0
c) = aR(z0

c) + iaI (z
0
c) ā

(
z0̄
c

) = aR

(
z0̄
c

) − iaI

(
z0̄
c

)
,

9Indeed, when applied to the gravitational wave amplitudes (78), the Cauchy-Riemann equations ∂yμhα
i

=
∂xμhα

r and ∂xμhα
i

= −∂yμhα
r tell us that hα

i
is completely specified (up to an irrelevant constant) in terms

of hα
r .
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where z0
c = η + iGNEc denotes a conformal complex ‘time.’ (In this section we

set the speed of light c = 1.) With these assumptions the holomorphic Christoffel
symbols (29) are then given by

ρ
μν = a′

a

(
δ0
νδ

ρ
μ + δ0

μδρ
ν − ηρ0ημν

)
(80)

and its complex conjugate, where a′ = da/dz0
c . Inserting (80) into the holomorphic

Riemann tensor (27) we obtain

Rμν =
[
a′′

a
−

(
a′

a

)2](
ημν − 2δ0

νδ
0
μ

)

+
(

a′

a

)2

[2δ0
νδ

0
μ + 2ημν]

and its complex conjugate. The holomorphic Ricci scalars are then given by

R = 6
a′′

a3
= 6

[
ä

a
−

(
ȧ

a

)2
]

and its complex conjugate, where we have contracted holomorphic Ricci tensors with
the inverse metric gμν = (1/a2)ημν and its complex conjugate, and ȧ = da/dz0,
dz0 = adz0

c . The holomorphic Einstein’s equations in four dimensions are

Rμν = 8πGN

(
Tμν − 1

2
gμνT

)

and its complex conjugate, of course. Because of the isotropy and homogeneity sym-
metries imposed, the Einstein’s equations contain only four independent equations
due to homogeneity and isotropy symmetries, namely one space-space (ii) equation,

ä

a
+ 2

(
ȧ

a

)2

= 4πG(ρ − p), (81)

the time-time (00) equation,

ä

a
= −4πG

3
(ρ + 3p) (82)

and the complex conjugates of these equations. We can simplify (81) by making use
of the time component (82) to obtain

H 2 ≡
(

ȧ

a

)2

= 8πGN

3
ρ, (83)

where H = ȧ/a denotes the holomorphic Hubble parameter. Equation (83) together
with (82) constitute the holomorphic Friedmann equations. It is easy to see that the
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holomorphic Friedmann equations are consistent with the holomorphic energy con-
servation equations

ρ̇ + 3
ȧ

a
(ρ + p) = 0 (84)

and its complex conjugate, which is derived from the holomorphic energy conserva-
tion equations

∂μT
μ
0 + 

μ
μλT

λ
0 − λ

μ0T
μ
λ = 0

and its complex conjugate, where we have used the expression of the energy-
momentum tensor (41) and holomorphic Christoffel symbol (80). Making use of (41)
and (39), we can express the energy density ρ and pressure p in terms of the scalar
field φ. In an isotropic and homogeneous universe the scalar field is a holomorphic
function of z0, φ = φ(z0), such that we have

ρ = 1

2
φ̇2 + V (φ), p = 1

2
φ̇2 − V (φ). (85)

The equations for ρ̄ and p̄ are just the complex conjugates of these expressions. The
equation of motion for the scalar field (38) becomes

φ̈ + 3Hφ̇ + dV

dφ
= 0 (86)

and the holomorphic Friedmann equations (82–83) then become

ä

a
= −8πGN

3

(
φ̇2 − V

)
(87)

and

H 2 ≡
(

ȧ

a

)2

= 8πGN

3

(
φ̇2

2
+ V

)
(88)

and the corresponding complex conjugates. Just like in general relativity, one can
show that only three equations among (84) and (86–88) are independent.

We shall now study the holomorphic Friedmann equations for different physical
circumstances and compare the results with those of general relativity.

9.1 Power Law Expansion

Let us now consider a homogeneous and holomorphic fluid with the equation of state,

w = p

ρ
, w ∈ C, 	[w] ≥ −1. (89)

In this case (84) is solved by,

ρ = ρ0

a3(1+w)
. (90)
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Next (87) and (88) can be combined into,

ε ≡ − Ḣ

H 2
= d

dz0

(
1

H

)
= 3

2
(1 + w), (91)

such that ε ∈ C is a complex constant and 	[ε] ≥ 0.
When (91) is integrated, one gets the holomorphic expansion rate,

H = 1

εz0
. (92)

This is easily integrated, to yield the holomorphic scale factor,

a =
(

z0

ζ0

)1/ε

. (93)

These solutions are a generalization of power law expansion of general relativity, in
that ε is in general a complex parameter. ζ0 is an arbitrary constant parameter that
signifies the complex time at which a = 1. Its physical significance is revealed by
realizing that ζ0 parametrizes the Hubble rate at the time z0 = ζ0, as can be seen
from (92) and (94).

Finally, the last equation we need to solve is (88), which gives,

H 2
0 = 1

ε2ζ 2
0

= 8πGNρ0

3
, (94)

where H0 = H(ζ0), ρ0 = ρ(ζ0).
We shall now show that, non unlike in general relativity, the holomorphic power

law expansion (93) can be realised by a homogeneous holomorphic scalar field
φ = φ(z0) with an exponential potential. Just like in general relativity, the power
law solution is then realised in the scaling limit, in which case it exhibits attractor
behavior [27, 28].

Let us consider the following Lagrangian density

L = 1

2
φ̇2 − V (φ), V (φ) = V0 exp

(
−λ

φ

M

)
. (95)

We now assume that the Friedmann equation permits a scaling solution of the
form, H ∝ 1/z0. Obviously, such a solution must satisfy,

φ̇ = φ̇0
ζ0

z0
, φ = φ0 + φ̇0ζ0 ln

(
z0

ζ0

)
, (96)

where φ0, φ̇0 and ζ0 are (complex) constants (note that ζ0 and φ0 are not independent;
indeed, rescaling ζ0 can be compensated by the appropriate shift in φ0). Note that (93)
implies that the scalar field (96) can be considered as a ‘marker’ for the scale factor,

a = exp

(
φ − φ0

εφ̇0ζ0

)
(97)
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and in this sense defines a clock.
A constant w requires the scaling of the potential (95),

V = V0 exp

(
−λφ0

M

)(
ζ0

z0

)(λφ̇0ζ0)/M

. (98)

We are free to absorb φ0 in V0 by redefining, V0 exp (−λφ0/M) → V0. Demanding
the scaling,

V = V0

(
ζ0

z0

)2

, (99)

implies the following condition on the initial field velocity,

φ̇0 = 2M

λζ0
, (100)

where V0 = V (φ0) = V (φ(ζ0)).10

Taking account of these scalings, the equation of state parameter w becomes in-
deed constant,

w = η0 − 1

η0 + 1
, η0 = φ̇2

0

2V0
= 2M2

λ2V0ζ
2
0

(101)

and hence ε in (91) is also constant,

ε = d

dz0

(
1

H

)
= 3η0

1 + η0
. (102)

The conservation equation is now trivially satisfied, implying the energy density scal-
ing, ρ = ρ0/a

2ε = ρ0(ζ0/z
0)2. Finally, the Friedmann equation (88) and (94) yields

the constraint

H 2
0 = 8πGNV0

3 − ε
. (103)

When this is combined with (102), one gets the following algebraic equation for ε

ε (ε − 3)

(
ε − λ2

16πGNM2

)
= 0, (104)

which links the parameters of the scalar theory with ε. Note that ε does not depend on
the initial conditions on the field, but only on the coupling parameters of the potential.
This should not surprise us since we are considering an attractor solution.

From (104) it follows that de Sitter space (ε = 0) and kination (ε = 3) are so-
lutions and have a special significance. One can show that 	[ε] ≤ 3, the limit is
saturated when λ2 = 16πGNM2. For larger values of λ there is no scaling solution:

10One can show that, even when the condition (100) is not met, quite generally φ̇ eventually approaches
the attractor solution for which (100) holds.
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V redshifts faster than the kinetic term, resulting in ε → 3. de Sitter space ε = 0
is also a solution of (104), which is realised when φ̇0 = 0. This is indeed a stable
solution, for which kinetic energy vanishes, and V = V0 ≡ �0/(8πGN), where �0
denotes the equivalent cosmological constant, which in holomorphic gravity can be
complex.

The nontrivial solution of (104) is

ε = λ2

16πGNM2
, 0 ≤ 	[ε] ≤ 3 (105)

which corresponds to the attractor solution when the condition 0 ≤ 	[ε] ≤ 3 in (105)
is satisfied. Of course, the solution (105) is more general than the corresponding
solution of general relativity in that λ and hence also ε can be complex. To appreciate
the significance of a complex ε, let us assume that the Universe follows the attractor
behavior with ε given by (105). In this case the exponential potential (95) can be
written as,11

V
attractor−→ V0 exp

(
−√

16πGNεφ
)

, 0 ≤ 	[ε] ≤ 3. (106)

This potential can be used to obtain both an accelerating universe (for which
	[ε] < 1) and a decelerating universe (with 	[ε] > 1). Thus with the appropriate
choice of λ all standard cases in cosmology can be reproduced: radiation era (ε = 2);
matter era (ε = 3/2); kination (ε = 3), which is realized in the limit when λ → 0 and
V0 → 0; inflation (0 < 	[ε] � 1), etc.

The physical Hubble parameter H is given in terms of the real part of the holo-
morphic expansion rate H as, H2 = 	[H 2]. For a real ε (92) implies,

	[H 2] = t2 − G2
NE2

ε2[t2 + G2
NE2]2

. (107)

For a complex ε the expression is more complicated,

	[H 2] = (ε2
R − ε2

I )[t2 − G2
NE2] − 4εRεI tGNE

|ε|4[t2 + G2
NE2]2

. (108)

In order to find out whether the holomorphic Big Bang singularity is ever reached,
we need to study geodesic equations, which shall give us a crucial information on
whether a freely falling observer experiences the holomorphic singularity in (107–
108) (cf. Ref. [1]).

The physical scale factor A can be obtained as the real part of the holomorphic
scale factor (93) squared,

A2 =
(

t2 + G2
NE2

|ζ0|2
) εR

|ε|2 − εI

|ε|2 Arctan
(

GN E

|t |
)

11Note that the scalar potential of hermitian gravity discussed in Ref. [1] differs from (106).
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× cos

([
2εI

|ε|2 + 2εR

|ε|2 Arctan

(
GNE

|t |
)]

× ln

(
t2 + G2

NE2

|ζ0|2
))

, (109)

where ε = εR + iεI . When εI = 0 and provided E does not grow with time (which
is reasonable), the Universe approaches the standard FLRW cosmology. When how-
ever εI �= 0, the Universe’s scale factor develops oscillations, which can result in sig-
nificant differences between holomorphic and FLRW cosmology even at late times.
This is a disadvantage of holomorphic cosmology when compared with, for example,
Hermitian cosmology developed in Ref. [1]. Note that, when ε develops an imagi-
nary part, then the potential (106) violates charge-parity symmetry. In this case, as
φ evolves, 	[V ] oscillates and can be either positive or negative. When the potential
is negative, the Universe can enter an anti-de Sitter-like phase. As a consequence,
the physical scale factor A2 in (109) can be either positive or negative. To prevent a
negative value for A2 one can add a constant to V (or a cosmological term), which
will keep A2 positive at all times. This type of behavior can have relevance for the
Universe’s dark energy.

9.2 Geodesic Equation

In order to better understand the behavior of the expansion rate and the corresponding
scale factor, we shall now consider a freely falling observer in the contracting phase.
To do that, we need to solve the corresponding geodesic equation, which in holomor-
phic gravity has formally the same form as the corresponding geodesic equation of
general relativity discussed for example in Ref. [1]. Taking account of the Christoffel
symbol (80), the geodesic equation and the line element can be written in conformal
time as,

du
μ
c

dτ
+ a′

a

(
2u0

cu
μ
c − δ

μ
0

a2

)
= 0,

a2ηαβuα
c uβ

c + ā2ηαβuᾱ
c uβ̄

c = −2,

(110)

where τ is the (real) proper time of a freely falling observer (in the frame in which
all 3-velocities vanish): (ds)2 = −2(dτ)2, and

uμ
c = dx

μ
c

dτ
(111)

is the 4-velocity in conformal coordinates x
μ
c = (η, xi

c). Defining the physical 4-
velocity as

uμ = auμ
c = a

dx
μ
c

dτ
(112)

we can rewrite the spatial and time component of the geodesic equation (110) as,

d(aui)

dτ
= 0,

d{a2[(u0)2 − 1]}
dτ

= 0. (113)



Found Phys (2011) 41:1597–1633 1627

These are solved by the following scaling solution,

(u0)2 − 1

(u0
0)

2 − 1
= a2

0

a2
,

ui

ui
0

= a0

a
, (114)

where u
μ
0 = uμ(τ0) and uμ = uμ(τ). We introduce a complex constant U by recast-

ing the first equation in (114) as

u0 ≡ dz0

dτ
= ±

√
U

a2
+ 1

U ≡ a2
0[(u0

0)
2 − 1] = UR + iUI .

(115)

When the line element (110) is taken account of, one would be tempted to identify,

U = a2
0‖�u0‖2. (116)

From the line element (110) it follows that, strictly speaking, only the real part of
(115) must be satisfied. Yet by holomorphy (which we assume to dictate a unique
analytic extension) we know that also the imaginary parts must match. We assume
here that (115) indeed holds true.

Upon rewriting (115) in the integral form we get,
∫

daaε

√
a2 + U

= τ

εζ0
, (117)

where we made use of (93) and dz0 = εz0da/a = εζ0a
ε−1da. Integrating (117)

yields a hypergeometric function. Rather than performing a general analysis of (117),
we shall consider the cosmologically interesting cases which are simple to analyze.
We shall first consider a curvature dominated epoch with ε = 1.

9.2.1 Curvature Dominated Epoch

In this case (117) integrates to,
√

a2 + U = τ

ζ0
. (118)

Note that is not a unique expression; there is a freedom to shift τ for an arbitrary real
constant. From (118) it follows that,

a =
√(

τ

ζ0

)2

− U

z0 =
√

τ 2 − Uζ 2
0 =

√
τ 2 − ζ 2

0 ‖�u‖2
0,

(119)

from where we conclude,

H 2 = 1

(z0)2
= 1

τ 2 − ζ 2
0 ‖�u‖2

0

. (120)
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From (119) we get for the physical scale factor,

A2 = 	[a2] = τ 2

|ζ0|2 cos(2θζ ) − |�u|20 cos(2θu)

‖�u‖0 = |�u|0eiθu , ζ0 = |ζ0|eiθζ ,

(121)

This then implies that the scale factor A2 will be positive at all times, provided both
cos(2θζ ) > 0 and cos(2θu) < 0, in which case the Big Bang singularity will never
be reached. In order to have a more precise understanding on whether the Big Bang
singularity is ever attained, we need to study a curvature invariant, one example being
the Hubble parameter.

Observe that the physical Hubble parameter, which is obtained from (120),

H2 = 	[H 2] = τ 2 − |�u|20|ζ0|2 cos(ϑ)

(τ 2 − |�u|20|ζ0|2 cos(ϑ))2 + |�u|40|ζ0|4 sin2(ϑ)
. (122)

represents a bounce universe, where we defined ϑ = 2(θu + θζ ). When cos(ϑ) > 0
the maximal physical expansion rate is reached when τ 2 = |�u|20|ζ0|2 cos(ϑ) +
|�u|20|ζ0|2 sin(ϑ), for which

H2
max = 1

2|�u|20|ζ0|2 sin(ϑ)
. (123)

As can be seen in Fig. 6(a), this corresponds to a local maximum. At τ 2 =
|�u|20|ζ0|2 cos(ϑ), H = 0; at even smaller proper times H2 < 0, which means that
a local observer will have the impression that the Universe has entered an anti-de
Sitter-like phase. Since we are in holomorphic gravity, there is no need to change the
form of the line element (vielbein) Ansatz (79). The minimal expansion rate squared
H2

min is reached when τ = 0,

H2
min = − cos(ϑ)

|�u|20|ζ0|2
, (124)

which is singular only when �u0 = 0, or equivalently when u0 = 1, corresponding to
a set of initial conditions of measure zero. Equations (122–124) nicely illustrate how
one can relate the coordinate energy E in (107) to the physical initial conditions of a
point particle (observer), thus giving the physical meaning to the question: how large
the holomorphic gravity corrections to general relativity actually are.

It is interesting to note that when cos(ϑ) < 0, the expansion rate (124) becomes
a global maximum, away from each H decreases monotonously in both directions,
as can be seen in Fig. 6(b). This case represents a more conventional bounce Uni-
verse, and it is realized when the initial 3-force dominates over the initial 3-velocity,
GN || �f (τ0)|| > ||�u(τ0)||.
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Fig. 6 The physical Hubble
parameter (122) in the curvature
dominated epoch as a function
of the proper time for different
values of ϑ remains finite at all
times. An infinite value of the
physical Hubble parameter is
attained when �[�u0] = 0, which
represents a set of initial
conditions of measure zero
compared to the set of all initial
conditions. (a) The physical
Hubble parameter with initial
conditions cos(ϑ) < 0. (b) The
physical Hubble parameter with
initial conditions cos(ϑ) > 0

9.2.2 Radiation Era

Let us now consider radiation era (ε = 2), in which case (117) integrates to,

a
√

a2 + U − U ln
(
a +

√
a2 + U

)
= τ

ζ0
(radiationera). (125)

This transcendental equation cannot be solved for a = a(τ) in terms of elemen-
tary functions and thus it is hard to analyze in complete generality. A rather con-
clusive analysis can be, nevertheless, performed by integrating (115) numerically,
which shows that, when U and ζ0 are chosen real, the Hubble expansion rate
H 2 = 1/(2z0)2 = 1/(2ζ0a

2)2 becomes singular at τ = 0, as can be clearly seen in
Fig. 7(a). When U = (u0)2

0 − 1 = ‖�u‖2
0 is complex however, then—as can be seen in

Fig. 7(b)—both 	[H 2] and �[H 2] are in general nonzero, implying that the phys-
ical Hubble parameter remains finite at all times. We conclude that, just like in the
case of curvature domination, there is no curvature singularity except for a set of ini-
tial conditions of measure zero (�[u0

0] = 0), when compared to the set of all initial
conditions (�[u0

0] arbitrary). The Big Bang singularity is hence resolved also in the
radiation era. We think that an analogous conclusion holds for more general expand-
ing space-times. Even though the physics of radiation era is quite different from that
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Fig. 7 The physical Hubble
parameter in radiation era
(ε = 2) as a function of proper
time τ for different initial
conditions. (a) The physical
Hubble parameter for observers
with real initial condition U

defined in (115) becomes
singular at some time τ , which
corresponds to the Big Bang
singularity. (b) When U in (115)
is complex, the physical Hubble
parameter remains finite at all
times, thus resolving the Big
Bang singularity. The Hubble
parameter is in general
nonsymmetric under time
reversal. Only when U is purely
imaginary, the physical Hubble
parameter is symmetric under
time reversal

of Schwarzschild black holes, the corresponding geodesic equations (50) and (115)—
based on which we performed the analyses of singularities—are of an identical form,
and thus the conclusions of the analyses are quite similar.

10 Conclusions and Discussion

In this paper we propose a novel complex theory of gravity—holomorphic gravity—
and discussed various aspects of the theory: its weak field limit, Schwarzschild-like
black holes, light deflection, gravitational waves and cosmology. Quite generically,
holomorphic gravity predicts the general relativistic result plus an unobservably small
correction. Exceptions are strong fields (close to the black whole and cosmological
singularities), where large deviations from general relativity occur, and which act in
favor of holomorphic gravity. For example, as opposed to general relativity, where
singularities are generic, in holomorphic gravity they occur, but only for observers
whose initial conditions correspond to a set of measure zero with respect to all possi-
ble initial conditions. This implies that a typical observer in holomorphic gravity will
not experience any singularity, in the sense that its geodesic can be extended ad infini-
tum. It is reasonable to expect that quantization of space-time and momentum-energy
will lead to further smearing of these point-like singularities.

Our original motivation for studying holomorphic gravity was in the fact that it
is a simpler sister of Hermitian gravity [1], the latter being theoretically better moti-
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vated since it obeys Born’s reciprocity symmetry. In Ref. [1] we found that Hermi-
tian gravity resolves the cosmological Big Bang singularity in a similar fashion as
holomorphic gravity. However, due to the complexity of Hermitian gravity, we were
unable to construct a Hermitian black hole metric, and thus could not say anything
definite about the strong field limit of Hermitian gravity near the black hole curvature
singularity.

Albeit it is a geometric theory, holomorphic gravity is defined on an eight dimen-
sional (phase-)space, and thus very different from general relativity. For this reason,
we shall now discuss in some detail the physical interpretation of the additional four
coordinates, which we refer to as the four momentum-energy pμ of observer’s frame,
yμ = (GN/c3)pμ. Furthermore, we shall discuss in what sense, if at all, holomorphic
gravity reduces to general relativity. In Einstein’s theory the momentum-energy coor-
dinates are tangent vectors on the geodesics of the manifold, pμ

GR = mduμ/dτ , where
τ is an affine parameter (time) along the geodesic. This means that we can simulta-
neously specify the position and momentum of a particle. However, a well known
fact is that in quantum mechanics the Heisenberg uncertainty principle forbids such
a simultaneous measurement.

Mainly in order to address that difficulty within the context of gravity, in Ref. [1]
we proposed a new theory—Hermitian gravity. Our hope was that Hermitian gravity
would be a better quantum theory of gravity than Einstein’s theory. Namely, Her-
mitian gravity incorporates two important ingredients: curved space and reciprocity
symmetry, which is the symmetry obeyed by the commutation relations of quantum
mechanics. This is achieved through the usage of Hermitian spaces, which contain
four complex dimensions: four real dimensions correspond to the space-time coor-
dinates and four imaginary dimensions to the momentum-energy coordinates. The
hermitian structure of the coordinates on the Hermitian manifold and its relation to
the Born’s reciprocity symmetry (and to the commutation relations), justifies that in-
terpretation.

Here we introduce holomorphic gravity, which is in many ways simpler then Her-
mitian gravity, but the classical theory has, mathematically speaking, a similar struc-
ture. The momentum-energy coordinates specify a frame in space-time-momentum-
energy, which is described by a complex manifold. A test particle’s kinematic is sen-
sitive not only to its space-time coordinates, but also to its momentum-energy co-
ordinates. Typical momentum-energy coordinates are so small that their effects are
negligible, i.e. the change in momentum-energy will have only a tiny effect on the
trajectory. To illustrate this, let us consider the line element of holomorphic gravity
on flat space (20), and rewrite it as:

(
ds

dτ

)2

= −
(

c
dt

dτ

)2

+
(

d �x
dτ

)2

+ G2
N

c6

[(
dE

cdτ

)2

−
(

d �p
dτ

)2]
,

where τ is an affine time parameter along the geodesic. In the low energy limit, in
which the four-force f μ = dpμ/dτ is small, this relation reduces to the on-shell
relation of general relativity

m2c2 ≈ −
(

mc
dt

dτ

)2

+
(

m
d �x
dτ

)2

≡ −E2
GR + �p2

GR,
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where we chose ds/dτ = c. Hence we conclude, that the on-shell relation of gen-
eral relativity is the low energy limit of holomorphic and Hermitian gravity theo-
ries. Thus in gravity theories on complex spaces it may be possible to represent the
quantum mechanical off-shell paths of virtual particles by the geodesics on com-
plex manifolds. In order to avoid possible misinterpretation, it is important to realize
that, the momentum-energy coordinates on complex manifolds have, in general, noth-
ing to do with the four-momenta of general relativity defined by the tangent vectors
on geodesics. Nevertheless, we feel that the name is justified, given that in the low
energy regime, in which the momentum-energy coordinates and the corresponding
four-force are both small, the two notions of momentum-energy coincide.

Finally, a couple of remarks on the symmetries of holomorphic gravity are in
order. The space-time-momentum-energy coordinates specify a frame. The frames
of holomorphic gravity are related by a coordinate transformation belonging to the
SO(1,3;C) group. This group leaves the space-time-momentum-energy line element
invariant, and is thus the symmetry of the theory. When the momentum-energy co-
ordinates are small, the SO(1,3;C) reduces to the Lorentz group SO(1,3;R), which
of course leaves the space-time element invariant. In its local disguise SO(1,3;C)

generalises the diffeomorphism invariance of general relativity.
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