86 research outputs found

    A parametric sensitivity study for single-stage-to-orbit hypersonic vehicles using trajectory optimization

    Get PDF
    The class of hypersonic vehicle configurations with single stage-to-orbit (SSTO) capability reflect highly integrated airframe and propulsion systems. These designs are also known to exhibit a large degree of interaction between the airframe and engine dynamics. Consequently, even simplified hypersonic models are characterized by tightly coupled nonlinear equations of motion. In addition, hypersonic SSTO vehicles present a major system design challenge; the vehicle's overall mission performance is a function of its subsystem efficiencies including structural, aerodynamic, propulsive, and operational. Further, all subsystem efficiencies are interrelated, hence, independent optimization of the subsystems is not likely to lead to an optimum design. Thus, it is desired to know the effect of various subsystem efficiencies on overall mission performance. For the purposes of this analysis, mission performance will be measured in terms of the payload weight inserted into orbit. In this report, a trajectory optimization problem is formulated for a generic hypersonic lifting body for a specified orbit-injection mission. A solution method is outlined, and results are detailed for the generic vehicle, referred to as the baseline model. After evaluating the performance of the baseline model, a sensitivity study is presented to determine the effect of various subsystem efficiencies on mission performance. This consists of performing a parametric analysis of the basic design parameters, generating a matrix of configurations, and determining the mission performance of each configuration. Also, the performance loss due to constraining the total head load experienced by the vehicle is evaluated. The key results from this analysis include the formulation of the sizing problem for this vehicle class using trajectory optimization, characteristics of the optimal trajectories, and the subsystem design sensitivities

    Population structure of three commercially important species in the Gulf of Guinea

    Get PDF
    The Gulf of Guinea Large Marine Ecosystem (LME) extends from the Bissagos Islands to Cape Lopez and takes in the maritime waters of all countries between Guinea Bissau and Gabon. The ecosystem is very productive and the fisheries sector is of great economic importance. This thesis uses molecular markers (mitochondrial DNA and microsatellites) to provide a compara­tive study of the population structure of three commercially important species in the region: Trachurus trecae (Cunene horse mackerel), Pagellus bellottii (Red pandora) and Sepia offici­nalis (Common cuttlefish). T. trecae showed evidence of population subdivision within the Gulf of Guinea (Fst=0.056) which was explicable by temporal (Fst=0.048), as opposed to spatial (^ST=0.001), structuring. Thus contemporaries from the same length cohort showed genetic similarity, regardless of geographic proximity. A significant correlation (correlation coefficient D: r=0.93, p=0.01) was found between the cohort length and Tajima’s D. P. bellottii likewise showed little evidence of spatial subdivision within the Gulf of Guinea (/st=0.009), however four individuals from a single trawl showed high sequence variation from all other samples (and when included in the analysis FsT=0.095). Both fish species displayed bimodal length frequen­cies for some trawls and when split according to cohort length there was evidence of within trawl heterogeneity, indicating that shoals are an aggregation of smaller groups. S. officinalis revealed no spatial subdivision in the the Gulf of Guinea (Fsr=0.00), though four individuals showed highly atypical allele sizes. Possible evidence of selection at one microsatellite locus was found. When compared with outgroups from southwest Africa and Europe T. trecae and S. officinalis showed great differentiation (Fst=0.642 and Fst=0.301 respectively). Comparative results across species therefore indicate (i) that the Gulf of Guinea is a well defined LME and (ii) there are no major oceanographic structures within the LME that have caused spatial pop­ulation subdivision. Given such a lack of spatial subdivision, management needs to operate at a regional level for these species. These results were found for three species with very differing life histories, so they may also be applicable to other marine species in the region

    Polymorphisms within a polymorphism: SNPs in and around a polymorphic Alu insertion in intron 44 of the human dystrophin gene

    Get PDF
    A polymorphic Yb-type Alu insertion on Xp21.3 shows a genotypic gradient across worldwide populations. We used single strand conformational polymorphism (SSCP), denaturing high-pressure liquid chromatography (DHPLC), and sequencing to characterize the level of polymorphism within this region. Two novel polymorphic sites were found within the Alu insertion itself, and a further seven novel polymorphic sites in the 2-kb flanking region. Our results showed that while DHPLC was more sensitive than SSCP, the limitations of DHPLC included the lack of ability to distinguish between multiple alleles or safely identify mutations on a polymorphic background. We believe that this is the first report of polymorphic single nucleotide polymorphisms (SNPs) within a polymorphic Alu distribution and that together they promise to provide a useful marker for human population and evolutionary genetics

    PMN J1838-3427: A new gravitationally lensed quasar

    Get PDF
    We report the discovery of a new double-image quasar that was found during a search for gravitational lenses in the southern sky. Radio source PMN J1838-3427 is composed of two flat-spectrum components with separation 1", flux density ratio 14:1 and matching spectral indices, in VLA and VLBA images. Ground-based BRI images show the optical counterpart (total I=18.6) is also double with the same separation and position angle as the radio components. An HST/WFPC2 image reveals the lens galaxy. The optical flux ratio (27:1) is higher than the radio value probably due to differential extinction of the components by the lens galaxy. An optical spectrum of the bright component contains quasar emission lines at z=2.78 and several absorption features, including prominent Ly-alpha absorption. The lens galaxy redshift could not be measured but is estimated to be z=0.36 +/- 0.08. The image configuration is consistent with the simplest plausible models for the lens potential. The flat radio spectrum and observed variability of PMN J1838-3427 suggest the time delay between flux variations of the components is measurable, and could thus provide an independent measurement of H_0.Comment: 23 pages, incl. 6 figures, to appear in A.J.; replaced with accepted version; minor changes to text, improved figure

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade

    Signals for Lorentz Violation in Electrodynamics

    Get PDF
    An investigation is performed of the Lorentz-violating electrodynamics extracted from the renormalizable sector of the general Lorentz- and CPT-violating standard-model extension. Among the unconventional properties of radiation arising from Lorentz violation is birefringence of the vacuum. Limits on the dispersion of light produced by galactic and extragalactic objects provide bounds of 3 x 10^{-16} on certain coefficients for Lorentz violation in the photon sector. The comparative spectral polarimetry of light from cosmologically distant sources yields stringent constraints of 2 x 10^{-32}. All remaining coefficients in the photon sector are measurable in high-sensitivity tests involving cavity-stabilized oscillators. Experimental configurations in Earth- and space-based laboratories are considered that involve optical or microwave cavities and that could be implemented using existing technology.Comment: 23 pages REVTe

    Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment

    Get PDF
    Background. The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patientreported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts.Methods. Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria.Results. The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P&lt;.05). There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres (P&lt;.05), as well as smaller brain volumes (P&lt;.01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker.Conclusion. Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer selfreported health status. This may be due to the statistical advantage of using a multivariate approach

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions
    corecore