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Background. The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. 
We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patient– 
reported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts.

Methods. Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, 
and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment de-
fined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria.

Results. The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND 
vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints gen-
erally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P < .05).

There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment de-
fined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean 
cortical thickness in both hemispheres (P < .05), as well as smaller brain volumes (P < .01). The associations with measures of white 
matter microstructure and brain-predicted age generally were weaker.

Conclusion. Different methods of defining cognitive impairment identify different people with varying symptomatology and 
measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer self-
reported health status. This may be due to the statistical advantage of using a multivariate approach.

Keywords. cognitive impairment; HIV; multivariate; neuroimaging.

Cognitive impairment remains a prevalent comorbidity in people 
living with HIV (PLWH) in the modern antiretroviral era [1]. The 
optimal way to define cognitive impairment in HIV disease, how-
ever, remains unclear, with rates of cognitive impairment being in-
herently dependent on the definition used [2, 3]. Additionally, the 
prevalence in exclusively virally suppressed cohorts is comparable to 
those reported in demographically matched HIV-uninfected con-
trol groups (29–36%) [4, 5]. Furthermore, the relationships between 
HIV-associated cognitive impairment and objective markers of 
brain injury identified using neuroimaging have been inconsistent 
[6, 7]. Taken together, these findings suggest that the burden of cog-
nitive impairment attributable to HIV, at least in virally suppressed 
populations, may be substantially lower than previously thought.

We have recently described a novel multivariate method (NMM) 
of defining cognitive impairment [3], based on a statistic called the 
Mahalanobis distance, which is well suited to analyzing multivar-
iate data, such as neuropsychological test batteries. Simulation 
data suggest it is more specific than both the HIV-associated 
neurocognitive disorders (HAND) and global deficit score (GDS) 
methods for identifying individuals with genuine impairment [3]. 
However, it is unknown whether this potentially favorable statis-
tical approach better identifies PLWH with neuropathology.

Here, we sought to compare the differences in patient-reported 
outcome measures and neuroimaging markers of brain structure be-
tween virally suppressed PLWH with and without cognitive impair-
ment, defined using the HAND, GDS, and NMM criteria across 3 
different cohorts of PLWH. Our hypothesis was that NMM-defined 
cognitive impairment would be more reliably associated with brain 
injury than the other methods due to its greater specificity.

METHODS

Participants

Participants were included from the multicenter, prospective 
Central nervous system HIV Anti-Retroviral Therapy Effects 
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Research (CHARTER), COmorBidity in Relation to AIDS 
(COBRA) and the Pharmacokinetic and clinical Observations 
in PeoPle over fiftY (POPPY) studies.

CHARTER
PLWH from the CHARTER cohort were included if they had plasma 
HIV RNA <50 copies/ml at the time of baseline neuroimaging assess-
ment (n = 139) as previously described [8]. The original CHARTER 
cohort and the neuroimaging sub-study are described in more detail 
in Heaton et al [1] and Jernigan et al [9]. Potentially confounding co-
morbid conditions were classified as per Antinori et al [10] into “in-
cidental” (eg, none or only mild traumatic brain injury [TBI] with no 
functional sequelae), “contributing” (eg, mild TBI with evidence of 
mild functional sequelae) and “confounding” comorbidities (eg, TBI 
without return to work or school) as previously described [8].

COBRA
Virally suppressed (plasma HIV RNA <50 copies/ml for 
>12  months prior to enrolment) PLWH without major 
confounding neurological comorbidities were recruited from 
centers in London and Amsterdam into the COBRA study 
(n = 139). Inclusion and exclusion criteria and cohort charac-
teristics have been described in detail elsewhere [11].

POPPY
PLWH were recruited from HIV outpatient clinics around the 
UK and Ireland into the POPPY study (n = 639). Inclusion and 
exclusion criteria and cohort characteristics have been described 
in detail previously [12]. For these analyses, only PLWH from 
the older (aged >50 years) HIV-positive groups were included 
to allow appropriate normalization of cognitive data using the 
study-specific control group as previously described [13].

Ethical Approval
The CHARTER study was approved by the Human Subjects 
Protection Committees of each participating institution. This 
COBRA study was approved by the institutional review board 
of the Academic Medical Center (AMC; NL 30802.018.09) and 
a UK Research Ethics Committee (REC; 13/LO/0584 Stanmore, 
London). The POPPY study was approved by the UK National 
Research Ethics Service (NRES; Fulham London, UK number 12/
LO/1409). All participants provided written informed consent.

Cognitive Function
Neuropsychological Testing
For the CHARTER and COBRA studies, all participants 
completed a comprehensive neuropsychological test bat-
tery assessing 7 and 6 cognitive domains respectively as pre-
viously described [1, 14] For the POPPY study, assessment of 
cognitive function was performed using the CogState battery 
(CogState, CogState Ltd, Melbourne, Australia), testing 6 cog-
nitive domains as previously described [13].

Defining Cognitive Impairment
Neuropsychological data were standardized into T-scores ac-
counting for demographic factors as previously described 
[1, 13, 14]. For each participant, a single domain T-score was 
calculated for each cognitive domain by averaging individual 
T-scores within each domain. The updated research nosology 
for HAND (or Frascati criteria) [10] and the GDS (with mean 
deficit score ≥0.5 used as the threshold to signify impairment) 
[15] were then applied to these domain T-scores.

Neuropsychological data are inherently multivariate and 
each cognitive domain is correlated in varying degrees to 
each other. The Frascati criteria and GDS methods consider 
each cognitive domain independently, not accounting for this 
covariance. The NMM method compares each individual’s 
cognitive performance across all domains simultaneously 
using a multivariate statistic called the Mahalanobis dis-
tance. This is measured from the multivariate mean of a 
hypothetical normative population informed by the meas-
ured cognitive data. It allows the inherent covariance be-
tween each cognitive domain to be accounted for, solves the 
multiple testing problem, and is arguably more appropriate 
for producing a binary result of impaired or not impaired. 
Similar to the GDS, it takes no account of the degree of func-
tional impairment and is based solely on objective cogni-
tive performance. Importantly, the NMM is not biased by 
the number of tests performed, unlike other approaches. It 
incorporates a user-defined threshold (alpha) below, which 
a given proportion of a normative population are labelled as 
impaired (ie, the ‘false positive rate’, which equals 1 – speci-
ficity). Choice of an optimal threshold requires an awareness 
of the implications of both false positive and false negative 
test results, with a balance reached between the two. A spec-
ificity of 85% has been suggested previously in neuropsycho-
logical literature to determine thresholds for individual tests 
of cognitive function as well as of a combined battery [16]. 
Therefore, this threshold was used when applying the NMM. 
In addition, various other false positive thresholds (5–20%) 
were also tested. Implementation of the NMM algorithm was 
accomplished using the web-based interface we developed 
and described previously [3]: https://jonathan-underwood.
shinyapps.io/cognitive_calculator/.

Patient-Reported Outcome Measures – POPPY Study Only
All participants from the POPPY study answered the previ-
ously recommended cognitive complaints screening questions 
[17] and completed validated questionnaires detailing the fol-
lowing: (1) physical and mental health with the Short Form 
Health Survey (SF-36) [18]; (2) instrumental activities of daily 
living with the Lawton IADL [19]; (3) depression with the 
Patient Health Questionnaire (PHQ-9) [20]; and (4) the Center 
for Epidemiologic Studies Depression scale (CES-D) [21]. 
Additionally, frequency of falls were recorded and outcomes 
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were then dichotomized for further analysis as previously 
described [13].

Neuroimaging – CHARTER and COBRA studies
Acquisition
For the CHARTER study, 3D T1-weighted MRI data were col-
lected with General Electric 1.5T scanners at Johns Hopkins 
University (n  =  30); Mt. Sinai School of Medicine (n  =  25); 
University of California,San Diego (n = 47); University of Texas 
Medical Branch (n  =  29), and the University of Washington 
(n = 8), as previously described [9]. For the COBRA study, 3D 
T1-weighted structural images and diffusion-weighted images 
along 64 non-collinear directions were acquired across the 2 
study sites. In London, images were acquired using a Siemens 
Verio scanner (n = 21) and in Amsterdam initially using a Philips 
Intera (n = 30) and then using a Philips Ingenia (n = 40) scanner 
due to a scanner upgrade as previously described [14]. See sup-
plementary data for further details of scanner parameters.

Processing
3D T1 images were preprocessed as previously described using 
SPM12 (University College London, UK) [14]. Briefly, images were 
bias-corrected, segmented into grey matter, white matter, and cere-
brospinal fluid; volumes were calculated with the sum representing 
the total intracranial volume. Segmented images were then registered 
to a custom template, normalized to Montreal Neurological Institute 
space using the DARTEL algorithm (for diffeomorphic image regis-
tration) [22], modulated to retain the volumetric characteristics of the 
original data and smoothed with a 6mm full-width half-maximum 
kernel. Mean cortical thickness across both cerebral hemispheres was 
computed using “recon-all” from the FreeSurfer software package 
(http://surfer.nmr.mgh.harvard.edu/, Harvard University).

Each participant’s apparent brain age was determined from 
T1-weighted data using a control population of 2001 healthy 
subjects ranging from 18–90 years as previously described [23, 
24]. Brain-predicted age difference (brain-PAD), a measure of 
deviance from the normal ageing trajectory, was calculated as 
follows: brain-predicted age – chronological age, so that posi-
tive scores represented brains that appear older than expected.

Diffusion data were preprocessed using FSL v5.0.6 (FMRIB, 
University of Oxford) as previously described [14]. Briefly, 
images were corrected for eddy currents and head motion by 
rigid-body registration to each subject’s initial B0 image. Non-
brain tissue was deleted [25] and the diffusion tensor model was 
fit at every voxel, using weighted least squares. These were then 
normalized to a custom template and standard space, using 
DTI-TK v2.3.1 [26].

Statistics

As one purpose of the study was to assess different methods 
of defining cognitive impairment, cohorts were not directly 
compared due to their demographic and methodological 

differences. Differences in neuroimaging measures (COBRA 
and CHARTER) between PLWH with and without impairment 
were assessed using multiple linear regression and least-squares 
means adjusting for age, intracranial volume, scanner, and co-
morbidity status (CHARTER study only) [8, 14]. Given the dif-
ferent units of measurement between measures, for illustrative 
purposes, standardized differences in the mean (ie, effect sizes) 
were calculated and made into radar plots. The ability of the dif-
ferent definitions of cognitive impairment to discriminate be-
tween PLWH reporting and not reporting each patient-reported 
outcome measure (PROM) (POPPYstudy) was assessed using the 
concordance (or “c”) statistic, which was also used to construct 
radar plots [13]. Concordance is typically considered reasonable 
when the c-statistic is >0.7 and strong when it is >0.8. Differences 
in physical and mental health summary scores (SF-36) between 
PLWH with and without cognitive impairment were calculated 
using the Wilcoxon rank-sum tests. Voxel-wise comparisons 
were performed to investigate localized changes in brain volumes 
using nonparametric permutation testing [27], accounting for 
age, intracranial volume, scanner type, and comorbidity status 
(CHARTER study only) for relationships that were significant at 
the whole brain level. Correction for multiple comparisons was 
accomplished using threshold-free cluster enhancement [28]. 
Unless otherwise stated, all analyses were performed using SAS 
v9.4 and R v3.2.1 (SAS, Cary, NC).

RESULTS

Participant Characteristics

The 3 cohorts differed in terms of demographics, with the 
POPPY study having the oldest participants and the CHARTER 
study having a higher proportion of Black-Africans and PLWH 
with prior AIDS-defining illnesses and lower nadir CD4+ cell 
counts (Table 1). All participants in the CHARTER and COBRA 
studies and 92.2% of POPPY participants had plasma HIV RNA 
<50 copies/mL. The median (interquartile range) global T-score 
was lowest in the CHARTER study (46.9 [42.9–51.0] vs 51.2 
[46.0–54.8] for the COBRA study and 48.5 [44.9–52.1] for the 
POPPY study). The prevalence of cognitive impairment varied 
both within and across cohorts according to the method used 
to define it (Table 2). This was most marked for the CHARTER 
study where the prevalence ranged from 20.9% for NMM to 
47.8% for the HAND criteria. The prevalence of impairment 
across studies was most consistent for the NMM (18.0%-21.4%) 
and least for the HAND criteria (16.5%-47.8%).

Patient Reported Outcome Measures (POPPY study)

Generally, the discriminative ability of the different definitions 
of cognitive impairment was only slightly better than chance 
for all PROMs considered (c-statistic  <  0.6 for all, Figure 1A 
and Supplementary Digital Content 2). GDS-defined impair-
ment was associated with a marginally stronger discriminative 
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ability of most PROMs than the other methods (Figure 1A). 
Physical and mental health summary scores measured using 
the SF-36 were lower in PLWH with GDS and NMM but not 
HAND-defined impairment compared to those without im-
pairment (Figure 1B, for physical health scores: GDS, 75.9 vs 
65.6 [P  =  .02]; NMM, 75.0 vs 60.9 [P  =  .03]; HAND, 74.4 vs 
72.2 [P = .60]; and for mental health scores: GDS, 75.9 vs 65.1 
[P  =  .02]; NMM, 75.5 vs 65.4 [P  =  .02]; HAND, 74.6 vs 71.4 
[P = .57]).

Neuroimaging Results (CHARTER and COBRA Studies)

Differences in neuroimaging measures between PLWH with and 
without impairment were greatest for the NMM (mean effect size 
1.64 versus 1.02 for HAND and 1.08 for GDS-defined impairment 
[summarized in Figure 2]; see Table 1, Supplementary Digital 

Content 1 for further details). In the CHARTER cohort, PLWH 
with NMM-defined impairment had lower grey matter volume 
(0.643 L vs 0.664 L, P = .004), but no difference in white matter 
volume (0.535 L vs 0.526 L, P = .3, Supplementary Digital Content 
3). Voxel-wise analysis revealed grey matter volume reductions 
principally in the medial frontal cortex, bilateral insular cor-
tices, anterior cingulate cortex, and right superior frontal gyrus 
(Figure 3). Similarly, in the COBRA cohort, PLWH with cogni-
tive impairment had lower grey matter volume (0.640 L vs 0.658 L, 
P =  .06) and a trend for lower white matter volume (0.464 L vs 
0.477  L, P  =  .10). HAND- or GDS-defined cognitive impair-
ment was not associated with differences in grey or white matter 
volumes in either the CHARTER or COBRA studies (P > .1 for all, 
Supplementary Digital Content 3). PLWH from the CHARTER 
cohort with NMM-defined impairment had brains that appeared 
to be older than expected (brain-PAD 6.02 vs 2.88 years, P = .06). 
However, in the COBRA cohort, there were no differences in 
brain-PAD for any of the methods tested (P > .5, Supplementary 
Digital Content 3).

In addition to brain volumetrics, diffusion and cortical 
thickness measures were available for the COBRA cohort 
(see Table 1 and Supplementary Digital Content 1 for details). 
Similar to the grey matter volumetric results, cortical thickness 
did not differ between PLWH with versus without HAND- or 
GDS-defined impairment (P >  .2 for all). In contrast, NMM-
defined impairment was associated with reductions in both 

Table 2. Prevalence of Impairment by Definition of Impairment for 
Each Cohort

Cohort

Criteria  n (%) with impairment

HAND GDS NMM

CHARTER (n = 139) 65 (47.8%) 41 (29.5%) 29 (20.9%)

COBRA (n = 134) 22 (16.5%) 24 (18.0%) 24 (18.0%)

POPPY (n = 636) 166 (26.1%) 175 (27.5%) 136 (21.4%)

Abbreviations: HAND, HIV-associated neurocognitive disorder; GDS, global deficit score; 
NMM, novel multivariate method.

Table 1. Demographics of the Cohorts

CHARTER (n = 139) COBRA (n = 134) POPPY (n = 639)

Age (years), median (IQR) 44 (44–50) 55 (51–62) 57 (53–62)

Gender, n (%)    

 Female 29 (20.9%) 9 (6.7%) 73 (11.4%)

 Male 110 (79.1%) 125 (93.3%) 566 (88.6%)

Ethnicity, n (%)    

 African-American/Black-African 61 (43.9%) 16 (12.0%) 79 (12.4%)

 White 64 (46.0%) 117 (88.0%) 560 (87.6%)

 Other 14 (10.1%) 0 (0%) 0 (0%)

Years of education, median (IQR) 13.0 (12.0–15.0) 14 (13–16) N/A

Educational attainment, n (%) N/A   

 No qualifications  12 (9.0%) 69 (10.8%)

 Secondary education  64 (47.8%) 189 (29.6%)

 Tertiary education  43 (25.4%) 281 (44.0%)

 Other/unknown  15 (11.2%) 101 (15.8%)

Diabetes, n (%) 15 (10.8%) 10 (7.5%) 34 (5.3%)

BMI (kg/m2), median (IQR) 25.7 (23.7–29.2) 24.6 (22.6–27.4) 25.6 (23.3–28.3)

CD4+ count (cells/µL), median (IQR) 540 (353–698) 618 (472–806) 619 (470–797)

CD4+:CD8+ cell count ratio, median (IQR) 0.60 (0.42–0.91) 0.84 (0.60–1.12) 0.73 (0.50–0.99)

Nadir CD4+ count (cells/µL), median (IQR) 121 (20–237) 180 (90–250) 180 (85–272)

Years since HIV diagnosis, median (IQR) 12.2 (6.3–15.8) 15.0 (9.1–20.0) 15.9 (10.0–22.4)

On antiretroviral therapy, n (%) 139 (100%) 134 (100%) 631 (98.8%)

Duration of antiretroviral therapy (years), median (IQR) 6.3 (2.6–9.4) 12.5 (7.4–16.9) 12.5 (6.6–17.5)

HIV RNA viral load <50 copies/mL, n (%) 139 (100%) 134 (100%) 587 (92.2%)

Prior clinical AIDS, n (%) 55 (39.6%) 42 (31.3%) 219 (34.3%)

Abbreviation: IQR, interquartile range. 
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left and right mean cortical thickness (Figure 2, left: 2.37 mm 
vs 2.32  mm P  =  .049; right: 2.37  mm vs 2.32  mm P  =  .048). 
In contrast to these findings, overall, the greatest differences 
in diffusion measures were observed with HAND-defined 
impairment (Figure 2) who had higher mean diffusivity and 
lower fractional anisotropy (P =  .02 and P =  .09 respectively, 
Supplementary Digital Content 3). However, a similar non-
significant pattern was seen in those with GDS- and NMM-
defined impairment (Figure 2).

DISCUSSION

Using data from 3 separate cohorts, our results demonstrate 
that the NMM was more reliably associated with objective 
markers of brain injury than the commonly used HAND 
and GDS methods of defining HIV-associated cognitive im-
pairment. The NMM was consistently associated with lower 
grey matter volume with voxel-wise analyses, demonstrating 
reductions in numerous brain regions that have been previously 
associated with cognition. This is the first study to directly 
compare NMM–defined cognitive impairment with the HAND 
and GDS methods using patient data, and it builds on previous 

simulation data [3], demonstrating superior diagnostic perfor-
mance of the NMM over the HAND and GDS methods for pro-
viding external validity.

More accurate methods of defining HIV-associated cognitive 
impairment are important for several reasons. First, knowledge 
of a method’s expected false positive rate is essential to correctly 
interpret results and estimate the burden of pathology attrib-
utable to disease (attributable burden  =  measured prevalence 
– expected false positive rate). The data presented here suggest 
that the burden of cognitive impairment attributable to HIV in 
well-treated cohorts is around 5% and not the 40–50% that is 
widely reported [1, 29]. Second, if a large percentage of PLWH 
are incorrectly labeled as cognitively impaired, then the power 
to detect true differences in other biomarkers between PLWH 
with and without impairment is reduced and limits under-
standing of the underlying pathophysiology. Finally, the use of 
sub-optimally performing methods as either inclusion criteria 
or as an outcome measure in a clinical trial may result in failure 
to demonstrate a beneficial effect of an intervention.

Previous work using a similar statistical approach, the mul-
tivariate normative comparison (MNC) [5], demonstrated 
higher specificity than the HAND method by comparing rates 
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of impairment to a demographically comparable control group. 
Su et al [6] reported a prevalence of cognitive impairment of 17% 
in virally suppressed PLWH – similar to the prevalence across 
the 3 cohorts presented here with the NMM. The advantage of 
the NMM over MNC is that a study-specific control group is not 
required, which allows for more interpretable results between 
studies and application to data collected without controls, such 
as the CHARTER study.

The consistent relationship between NMM-defined im-
pairment and lower grey matter volume reported here is 

an interesting finding. The locations of grey matter volume 
reductions associated with NMM impairment in the CHARTER 
cohort shows some similarity to that associated with PLWH 
with prior AIDS-defining conditions versus HIV-negative 
controls [30]. Similarly, PLWH with NMM but not HAND- or 
GDS-defined impairment had older appearing brains, which 
has previously been associated with prior AIDS-defining 
conditions and poorer cognitive function [8, 24]. Together, 
and in keeping with previous work, these findings suggest that 
cognitive impairment in virally suppressed PLWH may be the 
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Figure 3. Grey Matter Voxel-based Morphometry Analysis of the CHARTER Cohort Showing Areas of Grey Matter Atrophy Associated with Cognitive Impairment Defined 
Using the Novel Multivariate Method. Areas with significantly (P < .05) lower grey matter volume in those with impairment vs no impairment defined by the NMM-colored 
by the t-statistic, corrected for multiple comparisons (threshold-free cluster enhancement) and adjusted for age, intracranial volume, scanner, and comorbidity status (comor-
bidity status for CHARTER study only). Statistical image overlaid on MNI152 T1.
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Figure 2. Radar Plots of Neuroimaging Measures by Definition of Impairment. Distances from the center represent standardized differences in the mean (ie, effect sizes) 
between those with and those without impairment, adjusted for age, intracranial volume, scanner, and comorbidity status (comorbidity status for CHARTER study only). HAND 
indicates HIV-associated neurocognitive dysfunction (‘Frascati’ criteria); FA, fractional anisotropy; GDS, global deficit score; GM, grey matter; MD, mean diffusivity; NMM, 
novel multivariate method; PAD, predicated age difference; WM, white matter.
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sequelae of the period of untreated infection prior to the ini-
tiation of antiretroviral therapy and is mediated more by grey 
rather than white matter injury. The relationships between ob-
jective cognitive impairment and subjective markers of patient 
experience and function generally were weak contrasting with 
previous data reporting stronger relationships [31]. This prob-
ably reflects the incredible progress made in HIV-care over the 
last 2 decades, resulting in PLWH now having a lower burden of 
cognitive impairment and other HIV-associated comorbidities. 
This can be seen by the relatively greater prevalence of cogni-
tive impairment in the CHARTER versus COBRA and POPPY 
cohorts where recruitment began in 2003 versus 2010 and 2013, 
respectively [1, 12, 32].

One particular strength of this study is the comparison of the 
3 diagnostic criteria in 3 virally suppressed cohorts. However, 
it should be noted that the majority of participants were white 
males, which reflects the demographics of PLWH in the study 
locales. Therefore, it is uncertain whether the associations with 
neuroimaging measures would generalize to other settings, such 
as settings with a high prevalence of HIV-disease with a pre-
dominantly Black-African population without universal viral 
suppression. Additionally, it should be noted that comparable 
data were not available for all 3cohorts, which limits compar-
ison between them, although this was not the primary intention 
of this study. However, testing the methods across 3 different 
cohorts is likely to improve the generalizability of the findings. 
Another limitation is the small number of PLWH with cogni-
tive impairment in the neuroimaging cohorts, using any of the 3 
definitions, which may have limited the statistical power to de-
tect associations with cognitive impairment. Setting a threshold 
to determine whether someone is cognitively impaired or not 
is somewhat arbitrary and inevitably involves a trade-off be-
tween sensitivity and specificity. The 85% threshold chosen for 
the main body of the text was based on previous neuropsycho-
logical work [16]. It should be noted that using this threshold 
would result in 15% of a normative control population as im-
paired, which may not be desirable. However, this is still less 
than the HAND and GDS methods where ~25% and ~20% 
would be labelled as impaired [3]. In the supplementary tables, 
we provide results from sensitivity analyses in which we varied 
the expected specificity from 80–95%. The optimum threshold 
is yet to be determined and it is likely that it will depend on the 
purpose of the study. More stringent (ie, specific) criteria may 
be more desirable if the results determine whether an invasive 
procedure is necessary, whereas more sensitive criteria may be 
desired as an initial screening test.

In conclusion, the NMM method of determining cognitive 
impairment was more reliably associated with neuroimaging 
markers of brain injury than the HAND criteria or GDS. This is 
likely to be due to its inherent statistical advantages employing a 
multivariate approach, as well as the ability to a priori define its 
expected specificity. These findings have significant implications 

for further research into the pathophysiology of HIV-associated 
cognitive impairment.

Supplementary Data
Supplementary materials are available at Open Forum Infectious Diseases 
online. Consisting of data provided by the authors to benefit the reader, 
the posted materials are not copyedited and are the sole responsibility of 
the authors, so questions or comments should be addressed to the corre-
sponding author.
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