43 research outputs found

    Estimated Groundwater Withdrawals from Principal Aquifers in the United States, 2015

    Get PDF
    In 2015, about 84,600 million gallons per day (Mgal/d) of groundwater were withdrawn in the United States for various uses including public supply, self-supplied domestic, industrial, mining, thermoelectric power, aquaculture, livestock, and irrigation. Of this total, about 94 percent (79,200 Mgal/d) was withdrawn from principal aquifers, which are defined as regionally extensive aquifers or aquifer systems that have the potential to be used as sources of water of suitable quality and quantity to meet various needs. The remaining 6 percent (5,400 Mgal/d) was withdrawn from other, nonprincipal aquifers in the United States. Sixty-six principal aquifers belonging to 5 major lithologic groups have been identified and delineated in the United States, including Puerto Rico and the U.S. Virgin Islands. Of the water withdrawn from principal aquifers in 2015, 81 percent (63,900 Mgal/d) was from the unconsolidated and semiconsolidated sand and gravel lithologic group, 7.1 percent (5,630 Mgal/d) was from the igneous and metamorphic-rock lithologic group, 6.8 percent (5,360 Mgal/d) was from the carbonate-rock lithologic group, 3.4 percent (2,680 Mgal/d) was from the sandstone lithologic group, and 2.2 percent (1,710 Mgal/d) was from the sandstone and carbonate-rock lithologic group. The most heavily pumped of the 24 principal aquifers and aquifer systems within the unconsolidated and semiconsolidated sand and gravel lithologic group were the High Plains aquifer (12,300 Mgal/d), Mississippi River Valley alluvial aquifer (12,100 Mgal/d), Central Valley aquifer system (11,100 Mgal/d), and Basin and Range basin-fill aquifers (7,390 Mgal/d). Withdrawals for irrigation were 48,100 Mgal/d and accounted for 75 percent of the total withdrawals from this lithologic group. Although unconsolidated sand and gravel aquifers are widely distributed and were used as sources of water in all States except Hawaii and the U.S. Virgin Islands, 56 percent of the total withdrawn from unconsolidated and semiconsolidated sand and gravel aquifers was in just four States: California (15,600 Mgal/d), Arkansas (9,560 Mgal/d), Nebraska (5,570 Mgal/d), and Texas (4,830 Mgal/d). The most heavily pumped of the seven principal aquifers within the igneous and metamorphic-rock lithologic group were the Snake River Plain (2,930 Mgal/d) and Columbia Plateau basaltic-rock aquifers (1,080 Mgal/d), which are located in the northwestern United States and together accounted for 71 percent of the water withdrawn from this lithologic group. Withdrawals for irrigation were 4,190 Mgal/d and accounted for more than 74 percent of the total withdrawals from this lithologic group. Seventy-eight percent of the withdrawals from igneous and metamorphic-rock aquifers were in three States: Idaho (3,230 Mgal/d), Washington (614 Mgal/d), and Oregon (528 Mgal/d). The most heavily pumped of the 15 principal aquifers and aquifer systems within the carbonate-rock lithologic group were the Floridan aquifer system (3,180 Mgal/d) and the Biscayne aquifer (679 Mgal/d), which are in the southeastern United States and together accounted for almost 72 percent of the withdrawals from this lithologic group. Withdrawals for public supply (2,440 Mgal/d) and irrigation (1,610 Mgal/d) together accounted for almost 76 percent of the total withdrawals from this lithologic group. Although water was withdrawn from carbonate-rock aquifers in 35 States, 71 percent of the total withdrawn was in Florida (3,020 Mgal/d) and Georgia (785 Mgal/d). The most heavily pumped of the 15 principal aquifers within the sandstone lithologic group was the Cambrian- Ordovician aquifer system (921 Mgal/d), which is in the north-central United States and accounted for 34 percent of the water withdrawn from this lithologic group. Withdrawals for public supply were 1,030 Mgal/d and accounted for 38 percent of the total withdrawals from this lithologic group. Although sandstone aquifers were used as sources of water in 32 States, 45 percent of the total withdrawn from sandstone aquifers was in five States: Minnesota (321 Mgal/d), Wisconsin (319 Mgal/d), Kansas (193 Mgal/d), Illinois (187 Mgal/d), and Pennsylvania (179 Mgal/d). The most heavily pumped of the five principal aquifers and aquifer systems within the sandstone and carbonate rock lithologic group were the Edwards-Trinity aquifer system (661 Mgal/d) in the south-central United States and the Valley and Ridge aquifers (551 Mgal/d) of the eastern United States, which together accounted for 71 percent of total withdrawals from this lithologic group. Withdrawals from sandstone and carbonate-rock aquifers for public-supply (713 Mgal/d), irrigation (469 Mgal/d), and self-supplied domestic (253 Mgal/d) uses accounted for about 84 percent of the total withdrawals from this lithologic group. Although water was withdrawn from sandstone and carbonate-rock aquifers in 25 States, 65 percent of the total withdrawn was in Texas (651 Mgal/d), Pennsylvania (238 Mgal/d), and Florida (223 Mgal/d)

    Comprehensive analysis of the chromatin landscape in Drosophila melanogaster.

    Get PDF
    Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function

    Extent and patterns of community collaboration in local health departments: An exploratory survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Local public health departments (LHDs) in the United States have been encouraged to collaborate with various other community organizations and individuals. Current research suggests that many forms of active partnering are ongoing, and there are numerous examples of LHD collaboration with a specific organization for a specific purpose or program. However, no existing research has attempted to characterize collaboration, for the defined purpose of setting community health status priorities, between a defined population of local officials and a defined group of alternative partnering organizations. The specific aims of this study were to 1) determine the range of collaborative involvement exhibited by a study population of local public health officials, and, 2) characterize the patterns of the selection of organizations/individuals involved with LHDs in the process of setting community health status priorities.</p> <p>Methods</p> <p>Local health department officials in North Carolina (n = 53) responded to an exploratory survey about their levels of involvement with eight types of possible collaborator organizations and individuals. Descriptive statistics and the stochastic clustering technique of Self-Organizing Maps (SOM) were used to characterize their collaboration.</p> <p>Results</p> <p>Local health officials vary extensively in their level of collaboration with external collaborators. While the range of total involvement varies, the patterns of involvement for this specific function are relatively uniform. That is, regardless of the total level of involvement (low, medium or high), officials maintain similar hierarchical preference rankings with Community Advisory Boards and Local Boards of Health most involved and Experts and Elected Officials least involved.</p> <p>Conclusion</p> <p>The extent and patterns of collaboration among LHDs with other community stakeholders for a specific function can be described and ultimately related to outcome measures of LHD performance.</p

    Observations of Accreting Pulsars

    Get PDF
    We summarize five years of continuous monitoring of accretion-powered pulsars with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Our 20-70 keV observations have determined or refined the orbital parameters of 13 binaries, discovered 5 new transient accreting pulsars, measured the pulsed flux history during outbursts of 12 transients (GRO J1744-28, 4U 0115+634, GRO J1750-27, GS 0834-430, 2S 1417-624, GRO J1948+32, EXO 2030+375, GRO J1008-57, A 0535+26, GRO J2058+42, 4U 1145-619 and A 1118-616), and also measured the accretion torque history of during outbursts of 6 of those transients whose orbital parameters were also known. We have also continuously measured the pulsed flux and spin frequency for eight persistently accreting pulsars (Her X-1, Cen X-3, Vela X-1, OAO 1657-415, GX 301-2, 4U 1626-67, 4U 1538-52, and GX 1+4). Because of their continuity and uniformity over a long baseline, BATSE observations have provided new insights into the long-term behavior of accreting magnetic stars. We have found that all accreting pulsars show stochastic variations in their spin frequencies and luminosities, including those displaying secular spin-up or spin-down on long time scales, blurring the conventional distinction between disk-fed and wind-fed binaries. Pulsed flux and accretion torque are strongly correlated in outbursts of transient accreting pulsars, but uncorrelated, or even anticorrelated, in persistent sources.Comment: LaTeX, psfig, 90 pages, 42 figures. To appear in Dec. 1997 ApJS, Vol 113, #

    Topological R4R^4 Inflation

    Get PDF
    We consider the possibility that higher-curvature corrections could drive inflation after the compactification to four dimensions. Assuming that the low-energy limit of the fundamental theory is eleven-dimensional supergravity to the lowest order, including curvature corrections and taking the descent from eleven dimensions to four via an intermediate five-dimensional theory, as favored by recent considerations of unification at some scale around 1016\sim 10^{16} GeV, we may obtain a simple model of inflation in four dimensions. The effective degrees of freedom are two scalar fields and the metric. The scalars arise as the large five-dimensional modulus and the self-interacting conformal mode of the metric. The effective potential has a local maximum in addition to the more usual minimum. However, the potential is quite flat at the top, and admits topological inflation. We show that the model can resolve cosmological problems and provide a mechanism for structure formation with very little fine tuning.Comment: 25 pages, latex, 2 eps figures, minor changes, accepted for publication in Phys. Rev.

    American Gut: an Open Platform for Citizen Science Microbiome Research

    Get PDF
    McDonald D, Hyde E, Debelius JW, et al. American Gut: an Open Platform for Citizen Science Microbiome Research. mSystems. 2018;3(3):e00031-18

    Giants on the landscape: modelling the abundance of megaherbivorous dinosaurs of the Morrison Formation (Late Jurassic, western USA)

    Full text link

    First low-frequency Einstein@Home all-sky search for continuous gravitational waves in Advanced LIGO data

    Get PDF
    We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 [1/root Hz]. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 x 10(-25). At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 x 10(-24). At 55 Hz we can exclude sources with ellipticities greater than 10(-5) within 100 pc of Earth with fiducial value of the principal moment of inertia of 10(38) kg m(2)
    corecore