592 research outputs found

    Polynuclear alkoxy–zinc complexes of bowl-shaped macrocycles and their use in the copolymerisation of cyclohexene oxide and CO2

    Get PDF
    The reactions between alcohols and the tetranuclear ethyl-Zn complexes of an ortho-phenylene-bridged polypyrrole macrocycle, Zn4Et4(L1) 1 and the related anthracenyl-bridged macrocyclic complex, Zn4Et4(THF)4(L2) 2 have been studied. With long-chain alcohols such as n-hexanol, the clean formation of the tetranuclear hexoxide complex Zn4(OC6H13)4(L1) 3 occurs. In contrast, the use of shorter-chain alcohols such as i-propanol results in the trinuclear complex Zn3(Ό2-OiPr)2(Ό3-OiPr)(HL1) 4 that arises from demetalation; this complex was characterised by X-ray crystallography. The clean formation of these polynuclear zinc clusters allowed a study of their use as catalysts in the ring-opening copolymerisation (ROCOP) reaction between cyclohexene oxide and CO2. In situ reactions involving the pre-catalyst 1 and n-hexanol formed the desired polymer with the best selectivity for polycarbonate (90%) at 30 atm CO2, whilst the activity and performance of pre-catalyst 2 was poor in comparison

    Configuration development study of the X-24C hypersonic research airplane

    Get PDF
    Bottom line results were made of a three-phase study to determine the feasibility of designing, building, and operating, and maintaining an air-launched high performance aircraft capable of cruising at speeds up to Mach 8 for short durations. The results show that Lockalloy heat-sink structure affords the capability for a 'work-horse' vehicle which can serve as an excellent platform for this research. It was further concluded that the performance of a blended wing body configuration surpassed that of a lifting body design for typical X-24C missions. The cost of a two vehicle program, less engines, B-52 modification and contractor support after delivery, can be kept within $70M (in Jan. 1976 dollars)

    Identification of T cell stimulatory epitopes from the 18 kDa protein of Mycobacterium leprae

    Get PDF
    We have used different mouse strains to examine in vivo and in vitro responses to the 18 kDa protein of Mycobacterium leprae, which appears to be strongly immunogenic in both mice and humans. B and T cell stimulatory epitopes recognised by different strains of mice have been mapped using overlapping peptides that span the entire 18 kDa protein. Previous work established that Immunization of mice with the 18 kDa protein results in specific antibody production to common B cell epitopes and immunization of mice with peptides containing these B cell epitopes resulted in the induction of specific IgG to only a limited subset of epitopes in each strain. Now we report that T cells purified from mice immunized with peptides that stimulate antibody production, proliferate in vitro when rechallenged. The proliferating T cells produce levels of IL-2 and IFN-Îł, that indicate antigen-specific T helper type 1 cells are present in significant numbers. Thus, a comparison of in vivo and in vitro data suggests that T cells bearing the phenotype associated with potentially protective cell-mediated responses can be primed in vivo by epitopes on small peptides. Since T cells from both strains of mice are capable of responding to the immunogenic synthetic peptides in vitro, but give different responses to the same peptides in vivo, factors other than epltope structure appear to influence T cell subset activation. This may have important implications for diseases such as leprosy where a polarized T cell response appears to develop and for the development of synthetic subunit vaccine

    Pressure-induced inclusion of neon in the crystal structure of a molecular Cu2(pacman) complex at 4.67 GPa

    Get PDF
    Crystals of a Cu complex of the macrocyclic Schiff-base calixpyrrole or 'Pacman' ligand, Cu2(L), do not contain any solvent-accessible void space at ambient pressure, but adsorb neon at 4.67 GPa, forming Cu2(L)·3.5Ne

    Towards dipyrrins:oxidation and metalation of acyclic and macrocyclic Schiff-base dipyrromethanes

    Get PDF
    Oxidation of acyclic Schiff-base dipyrromethanes cleanly results in dipyrrins, whereas the macrocyclic ‘Pacman’ analogues either decompose or form new dinuclear copper(ii) complexes that are inert to ligand oxidation.</p

    Proceedings, Pot Chrysanthemum School, 1971

    Get PDF
    Space management / Robert W. Langhans -- Soils / D. C. Kiplinger -- Nutrition / George L. Staby -- Temperature and photoperiod / Joseph W. Love -- Automated short day control -- R. A. Aldrich -- Growth regulators / James B. Shanks -- Programming for insect-free pot mums / Richard K. Lindquist -- Programming for disease-free pot mums / Lester P. Nichols and Paul E. Nelson -- Where you go wrong / Harry K. Tayam

    Metronidazole for the treatment of Tritrichomonas foetus in bulls

    Get PDF
    Abstract Background: Tritrichomonas foetus is a sexually transmitted protozoon that causes reproductive failure, among cattle, so disruptive that many western US states have initiated control programs. Current control programs are based on the testing and exclusion of individual bulls. Unfortunately, these programs are utilizing screening tests that are lacking in sensitivity. Blanket treatment of all the exposed bulls and adequate sexual rest for the exposed cows could provide a more viable disease control option. The objectives of this study were twofold. The first objective was to demonstrate effectiveness for metronidazole treatment of a bull under ideal conditions and with an optimized treatment regime. This type of study with a single subject is often referred to as an n-of-1 or single subject clinical trial. The second objective of the current study was to review the scientific basis for the banning of metronidazole for use in Food Animals by the Animal Medicinal Drug Use Clarification Act of 1994 (AMDUCA). Results: Results from an antimicrobial assay indicated that metronidazole at a concentration of 0.5 ÎŒg/mL successfully eliminated in vitro protozoal growth of bovine Tritrichomonas foetus. The estimated effective intravenous dose was two treatments with 60 mg/kg metronidazole, 24 h apart. A bull that had tested positive for Tritrichomonas foetus culture at weekly intervals for 5 weeks prior to treatment was negative for Tritrichomonas foetus culture at weekly intervals for five consecutive weeks following this treatment regimen. An objective evaluation of the published evidence on the potential public health significance of using metronidazole to treat Tritrichomonas foetus in bulls provides encouragement for veterinarians and regulators to consider approaches that might lead to permitting the legal use of metronidazole in bulls. Conclusion: The study demonstrated successful inhibition of Tritrichomonas foetus both in vitro and in vivo with metronidazole. The current status of metronidazole is that the Animal Medicinal Drug Use Clarification Act of 1994 prohibits its extra-label use in food-producing animals. Veterinarians and regulators should consider approaches that might lead to permitting the legal use of metronidazole in bulls. Keywords: Tritrichomonas feotus, metronidazole, cattleTexas A&M University Department of Large Animal Clinical Sciences

    Earth-Abundant Mixed-Metal Catalysts for Hydrocarbon Oxygenation

    Get PDF
    The oxygenation of aliphatic and aromatic hydrocarbons using earth-abundant Fe and Cu catalysts and “green” oxidants such as hydrogen peroxide is becoming increasingly important to atom-economical chemical processing. In light of this, we describe that dinuclear Cu<sup>II</sup> complexes of pyrrolic Schiff-base macrocycles, in combination with ferric chloride (FeCl<sub>3</sub>), catalyze the oxygenation of π-activated benzylic substrates with hydroperoxide oxidants at room temperature and low loadings, representing a novel design in oxidation catalysis. Mass spectrometry and extended X-ray absorption fine structure analysis indicate that a cooperative action between Cu<sup>II</sup> and Fe<sup>III</sup> occurs, most likely because of the interaction of FeCl<sub>3</sub> or FeCl<sub>4</sub><sup>–</sup> with the dinuclear Cu<sup>II</sup> macrocycle. Voltammetric measurements highlight a modulation of both Cu<sup>II</sup> and Fe<sup>III</sup> redox potentials in this adduct, but electron paramagnetic resonance spectroscopy indicates that any Cu–Fe intermetallic interaction is weak. High ketone/alcohol product ratios, a small reaction constant (Hammett analysis), and small kinetic isotope effect for H-atom abstraction point toward a free-radical reaction. However, the lack of reactivity with cyclohexane, oxidation of 9,10-dihydroanthracene, oxygenation by the hydroperoxide MPPH (radical mechanistic probe), and oxygenation in dinitrogen-purge experiments indicate a metal-based reaction. Through detailed reaction monitoring and associated kinetic modeling, a network of oxidation pathways is proposed that includes “well-disguised” radical chemistry via the formation of metal-associated radical intermediates
    • 

    corecore