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ABSTRACT: The oxygenation of aliphatic and aromatic hydrocarbons using earth-abundant iron and copper catalysts and ‘green’ 

oxidants such as hydrogen peroxide is becoming increasingly important to atom-economical chemical processing. In light of this, we 

describe that dinuclear CuII complexes of pyrrolic Schiff-base macrocycles, in combination with FeCl3, catalyze the oxygenation of 

π-activated benzylic substrates with hydroperoxide oxidants at room temperature and low loadings, representing a novel design in 

oxidation catalysis. Mass spectrometry and EXAFS analysis indicate that a cooperative action between CuII and FeIII occurs, most 

likely due to the interaction of FeCl3 or FeCl4
– with the dinuclear CuII macrocycle. Voltammetric measurements highlight a modula-

tion of both CuII and FeIII redox potentials in this adduct, but EPR spectroscopy indicates that any Cu-Fe intermetallic interaction is 

weak. High ketone/alcohol product ratios, a small reaction constant (Hammett analysis) and small KIE for H-atom abstraction point 

towards a free-radical reaction. However, lack of reactivity with cyclohexane, oxidation of 9,10-dihydroanthracene, oxygenation by 

the hydroperoxide MPPH (radical mechanistic probe), and oxygenation in N2-purge experiments indicate a metal-based reaction. 

Through detailed reaction monitoring and associated kinetic modelling, a network of oxidation pathways is proposed that includes 

“well-disguised” radical chemistry via the formation of metal-associated radical intermediates. 

Introduction 

The combination of earth-abundant metals such as Fe or Cu, 

with oxidants such as O2 or H2O2 offers “green” alternatives to 

more traditional, toxic, stoichiometric or catalytic chromium 

and manganese reagents for the oxygenation of alkanes. The 

process has a strong foundation in understanding enzymatic ox-

ygenation of hydrocarbons.1-7 Cytochrome P450 and peroxidase 

enzymes react aerobically through high-oxidation-state iron 

oxo (FeIV=O, “ferryl heme”) complexes.8-10 Tyrosinase en-

zymes feature bimetallic CuI active sites that oxidize catechol 

to ortho-quinone.11-12 Methane monooxygenase (MMO) en-

zymes contain either copper or iron13-14 and oxidize the strong 

C–H bonds of methane (HDiss = 439 kJ mol–1).15-16 This has led 

to the development of oxygenation catalysts based on copper 

and iron complexes17 that incorporate the M(-O2)M diamond 

motif,18-21 reactive iron-oxo and -peroxo porphyrins,22-27 and 

non-heme FeIV=O28-32 or FeV=O33 functionalities. 

Simple transition metal salts of copper and iron have also 

been used in non-biomimetic approaches to oxygenation catal-

ysis, mainly in combination with hydrogen peroxide (H2O2) or 

tert-butyl hydroperoxide (tBuOOH, TBHP) as the oxidant. The 

reaction between CuBr and TBHP forms mixtures of tBuO• 

(alkoxyl) and tBuOO• (peroxyl) radicals that carry out hydro-

gen-atom abstraction (HAA) from hydrocarbons.34 CuCl2, CuCl 

and copper metal catalyze oxygenation of π-activated benzylic 

substrates using TBHP.35-36 Furthermore, copper acetate cata-

lyzes the oxidation of aromatic C–H bonds using O2 as an oxi-

dant.37 The related Kharasch-Sosnovsky reaction of dialkyl-per-

oxides leads to etherification of hydrocarbon substrates and is 

typically catalyzed by CuI salts,38-41 and coordination com-

plexes of CuI have also been implemented in radical reactions.42 

Simple iron salts (most commonly FeCl3) and their complexes 

catalyze oxygenation reactions of hydrocarbon substrates with 

high bond-dissociation energies (BDEs), including cyclohex-

ane.43-56 The bulk of these reactions are described by Fenton 

mechanisms,57-58 in which the role of iron is to generate highly 

reactive hydroxyl,59 tert-butoxyl60 and tert-butyl peroxyl61 free 

radicals from the hydroperoxide.  

Mixtures of metal compounds can act as tandem catalysts 

for oxygenation reactions.62-65 Combinations of FeII and CrII 

diketonates carry out tandem oxygenation and epoxidation ca-

talysis of cyclohexene.66-67 Additionally, copper acetate and 

FeCl3 mixtures act as catalysts for a complex series of C–C and 

C–O bond forming reactions, although these reactions require 

high catalyst loadings.68 A mixture of Fe2SO4 and CuCl2 cata-

lyzes oxidation and isomerization of alkene-containing organo-

peroxides, yielding ketone products, with the postulated mech-

anism showing the two metal ions participating in tandem.69 In 

terms of cooperative catalysis, mixtures of copper and iron (in 

the form of salts, complexes or nanoparticles) have been used 

to successfully promote cross-coupling reactions,70 including 

those that form new C–C bonds,71-74 C–O bonds,75-76 C–S 

bonds,77 and also N-arylation.78-80 In contrast, there is surpris-

ingly little use of mixtures of metals and their complexes in co-

operative catalysis for the direct functionalization of hydrocar-

bon C–H bonds. In one example, amination of an allylic C–H 

bond was achieved by a palladium acetate catalyst, but only 

when a CrIII catalyst was also present to aminate the palladium-

allyl intermediate.81  

Based on these precedents we sought to employ dinuclear 

CuII complexes of Schiff-base pyrrole macrocycles as catalysts 

for hydrocarbon oxygenation (Figure 1).82-83 Through variation 

of various components in these macrocycles, important param-

eters such as inter-nuclear separation and cavity size can be con-

trolled.84-85 The macrocyclic clefts offered by these complexes 

are reminiscent of supramolecular flasks, where catalytic and 

stoichiometric reactions that are disfavored in the bulk phase, 
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can take place within the host structure due to the increased ef-

fective concentration and lowered entropy.86-89 Dinuclear FeII 

Pacman diporphyrin complexes activate O2, leading to reactive 

FeIV=O complexes (through photolysis) that oxidize hydrocar-

bon substrates to generate alcohols.22 We anticipated that reac-

tions between complexes A, B, or C (Figure 1) and hydroper-

oxides might form reactive species akin to diamond MO2M 

complexes,21,90-91 as the structurally related Schiff-base Pacman 

complexes of CoII catalyze the microscopic reverse dioxygen-

reduction reaction.92-94 Electrochemical measurements have in-

dicated that the CuIII oxidation state is also accessible for these 

complexes, leading to the possibility of the formation of CuIII–

OH complexes which could take place in HAA reactions.95-98  

We report here the use of dinuclear CuII complexes for the 

catalytic oxygenation of π-activated, benzylic hydrocarbon sub-

strates, using hydroperoxide oxidants. We find that the activity, 

stability, and operating temperature of the catalyst improves 

substantially by the addition of FeCl3, and we report the at-

tempted characterization of the catalytically active species 

through detailed spectroscopic and voltammetric methods, as 

well as the elucidation of a plausible reaction network through 

kinetics studies. To the best of our knowledge, there are no pre-

vious reports of mixtures of copper and iron compounds being 

used to catalyze the oxygenation of hydrocarbon bonds. 

 

Figure 1. Dinuclear CuII macrocycles used as pre-catalysts for ben-

zylic hydrocarbon oxygenation and the proposed pre-catalyst aris-

ing from A + FeCl3. Complexes A and B adopt Pacman configura-

tions and feature different spacer groups (Cu…Cu = 3.695 / 3.738 

Å for A and 4.818(3) Å for B). Complex C adopts a bowl geometry 

(Cu…Cu = 6.493(6) Å). 

Results and Discussion 

Catalysis with bimetallic CuII macrocycles 

Initial oxygenation reactions using the bimetallic CuII com-

plexes A – C (0.2 mol%) were carried out in d3-MeCN, using 

TBHP as the oxidant (Scheme 1). Xanthene was chosen as the 

substrate due to the low bond-dissociation energy (BDE) of its 

benzylic C–H bond (HDiss = 75.5 kcal mol–1).99 All three com-

plexes are catalytically inactive at room temperature, but on 

heating at 333 K the substrate is consumed, as evidenced by the 

loss of the benzylic proton resonance at 4.05 ppm in the 1H 

NMR spectrum. 

 

Scheme 1. Oxygenation of xanthene catalyzed by the dinuclear 

CuII complexes A – C at 333 K (yields determined by 1H NMR 

spectroscopy). 

The three products formed were identified by NMR/MS as 

the benzylic alcohol (xanthydrol, ROH), the organo-peroxide 

((tert-butyl)xanthyl peroxy-ether, ROOtBu) and the benzylic 

ketone (xanthone, RO) after isolating the products on a prepar-

ative scale. One co-product of the reaction is tert-butanol, iden-

tified by the singlet resonance at 1.17 ppm of the methyl pro-

tons. Importantly, no 9,9’-bixanthene is seen, a homo-coupling 

product which might be expected to form if an organic free-rad-

ical reaction mechanism operates through HAA from xan-

thene.100 

The concentration profiles for xanthene and its three oxy-

genated products were determined by 1H NMR spectroscopy 

(Figure 2) with 93% conversion of the substrate seen within 30 

min, giving a formal initial turnover frequency (TOF) of 930 h–

1.  

 

Figure 2. Monitoring the oxygenation of xanthene by 2.2 eq. 

TBHP, catalyzed by 0.2 mol% of complex C at 333 K in d3-MeCN 

(concentrations determined by 1H NMR integration). Interpolation 

between the data-points is provided solely as an aid to the eye. 

After 2 h, the oxidation products ROOtBu and RO are 

formed in yields of 60% and 33%, respectively, with ROH in 

7% yield. After this period, the concentrations of both ROOtBu 

and RO almost plateau for 10 h before the peroxy-ether slowly 

converts to the ketone through auto-oxidation at an approximate 

initial rate of 2 × 10–7 mol dm–3 s–1. At room temperature, the 

background (non-catalyzed) oxidation of isolated ROOtBu is 

found to be slow (1 × 10–8 mol dm–3s–1) but is accelerated in the 

presence of 0.2 mol% of C (2 × 10–6 mol dm–3 s–1). The slow 

oxidation of ROOtBu during the first 10 hours (Figure 2) sug-

gests that the active catalyst inhibits the auto-oxidation during 

this stage. 
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Variation of the ligand scaffold in the macrocyclic com-

plexes A – C causes dramatic changes in terms of their geomet-

ric and electronic properties, evident from their solid-state 

structures and electrochemical behaviour.82-83 Despite these dif-

ferences, varying the catalyst A – C did not change the activity 

or distribution of products, nor did it make the catalyst more or 

less susceptible to deactivation or inhibition. As the dipyrro-

methane groups containing meso-H substituents in complexes 

B and C could potentially undergo oxidation chemistry to di-

pyrrins,101-102 only complex A was used to study the catalytic 

reactions in detail. 

Mixed-metal catalysis 

Whilst the CuII complexes are highly active xanthene oxy-

genation catalysts, this activity quickly arrests. In order to ad-

dress this issue, FeCl3 was employed initially as a simple FeIII 

co-catalyst, as it has been demonstrated previously to catalyze 

the oxidation of benzylic alcohol substrates.46 We hypothesized 

that this mixed-metal system would carry out tandem catalysis, 

with the CuII complex catalyzing xanthene oxygenation to form 

a mixture of ROH and ROOtBu and FeCl3 catalyzing the for-

mation of RO in improved yields with shorter reaction times. 

Surprisingly, at catalyst loadings of 0.1 mol% A and 0.1 

mol% FeCl3, the reaction proceeds at room temperature; A 

shows negligible activity at room temperature, and FeCl3 

achieves only 13% conversion after 2 h, whereas the A/FeCl3 

mixture achieves 80% conversion within 2 h. Reaction moni-

toring by 1H NMR spectroscopy revealed that the substrate is 

consumed after 4 h (Scheme 2, Figure 3), forming 72% 

ROOtBu, 19% RO and 9% ROH. Longer reaction times (12 

h) and higher relative concentrations of TBHP are found to 

drive the selectivity towards the ketone product (in excess of 

80%, Figure 3). It is significant that the addition of FeCl3 both 

limits deactivation of the CuII catalyst and enhances reaction 

rate, implying that cooperative catalysis is taking place.  

 

Scheme 2. Xanthene oxygenation catalyzed by a mixture of 

FeCl3 and A, at 300 K (yields after 4 h shown, determined by 
1H NMR spectroscopy). 

 

 

Figure 3. Monitoring xanthene oxygenation by TBHP catalyzed by 

mixtures of A and FeCl3 at 300 K in d3-MeCN (concentrations de-

termined by 1H NMR spectroscopy). Top: [xanthene]0 = 150 mM, 

[TBHP]0 = 575 mM, [A]0 = 150 μM, [FeCl3]0 = 150 μM. Bottom: 

[xanthene]0 = 75 mM, [TBHP]0 = 300 mM, [A]0 = 150 μM, [FeCl3]0 

= 150 μM. Interpolation between the data-points is provided solely 

as an aid to the eye. 

To test the stability of the catalyst further, recycling was at-

tempted. The reaction between xanthene and 4 eq. of TBHP at 

room temperature, catalyzed by 0.1 mol% A/FeCl3, affords RO 

as a colorless precipitate in 90% yield after 16 h. However, fil-

tering and recharging the solution with xanthene and TBHP led 

to no further conversion of the substrate. In contrast, the catalyst 

was much more stable at very low loading and could be recycled 

multiple times. The reaction between xanthene and 4 eq. of 

TBHP, catalyzed by 0.002 mol% A/FeCl3 was monitored by 1H 

NMR spectroscopy (Figure 4, top). Under these conditions the 

catalyst is surprisingly active with 90% conversion of the sub-

strate in 30 h; the TOF at 50% conversion is high at 1595 h–1. 

Under low-catalyst conditions, RO does not precipitate, and in-

stead ROOtBu is formed as the major product (78% selectivity 

at 30 h). The reaction is slower in the second cycle but 80% 

conversion of xanthene is achieved after an additional 96 h. In 

the third cycle, the catalyst activity depreciates significantly and 

only 13% conversion is seen in the next 48 h. Nevertheless, the 

mixed-metal catalyst is able to carry out more than 100,000 

turn-overs under these conditions. Steady catalyst deactivation 

is seen over time, with the TOF diminishing by approximately 

100 h–1 every 10 h (Figure 4, bottom).  

To investigate the role of FeCl3, a catalytic reaction was car-

ried out using A (0.1 mol%) and InCl3 (0.5 mol%) as a chloride-

containing, redox-inactive Lewis acid. After 24 h, the room-

temperature reaction between xanthene and TBHP (2 eq) shows 

only 3% conversion. A similar reaction involving scandium(III) 

triflate (0.5 mol%) achieves higher conversion of 18% after 24 

h, forming ROOtBu as the sole product. Under the same con-

ditions, reactions involving A and FeCl3 achieve 90% conver-

sion at lower catalyst loading (0.1 mol%), yielding higher 

amounts of the alcohol and ketone products, in just 3 h. These 

experiments indicate that FeCl3 does not simply act as a Lewis 

acid or a chloride source, but that its redox properties may also 

be important. 
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Figure 4. Assessing the stability of the A/FeCl3 catalyst in the xan-

thene oxygenation reaction through multiple reaction cycles. Reac-

tion conditions: stirring d3-MeCN, room temperature, [xanthene]0 

= 170 mM, [TBHP]0 = 680 mM, [A]0 = 3.4 μM, [FeCl3]0 = 3.4 μM 

(0.002 mol%). Top: monitoring the xanthene concentration by 1H 

NMR spectroscopy to determine the %conversion and TON. Bot-

tom: monitoring changes in TON and TOF during the course of the 

reaction. Interpolation between the data-points is provided solely 

as an aid to the eye. 

CuCl2 is known to catalyze the oxygenation of benzylic sub-

strates36 and we find that the room-temperature oxygenation of 

xanthene by TBHP, catalyzed by CuCl2, proceeds with a reac-

tion profile almost identical to catalytic reactions involving 

A/FeCl3. However, an equimolar mixture of FeCl3 and CuCl2 

leads to no enhancement of the CuCl2 catalyzed reaction, indi-

cating that the improved activity and stability of complex A on 

addition of FeCl3 is a direct consequence of the macrocyclic lig-

and.  

Scope of the catalytic reaction 

The catalytic reaction is found to be tolerant of the choice 

of solvent, with identical conversion and product distributions 

seen after 2 h in acetonitrile (polar, coordinating), dichloro-

methane (polar, non-coordinating), and benzene (apolar).  

A number of peroxide oxidants were tested in the xanthene 

oxygenation reaction, although TBHP is the best by far (Figure 

5). Where 100% conversion of xanthene is seen after 2 h when 

TBHP is used, the conversion is lowered to 60% when H2O2 is 

used. Use of the organo-peroxides di-tert-butyl peroxide 

(DTBP), tert-butyl peroxy-benzoate, or dicumyl peroxide gives 

no reaction. Similarly, no reaction is seen when carried out in 

air in the absence of a hydroperoxide oxidant. Finally, adding 

cyclohexanecarboxaldehyde as a co-oxidant to promote aerobic 

oxidation103-104 does not yield any oxygenated products. 

 

Figure 5. Screening different oxidants in the xanthene oxygenation 

reaction, catalysed by 0.1 mol% A and 0.1 mol% FeCl3. Reaction 

conditions: 0.15 M xanthene, 2 eq oxidant, stirred MeCN, room 

temperature, 3 h (conversion of xanthene determined by 1H NMR 

spectroscopy).  

A range of hydrocarbon substrates were tested in reactions 

with TBHP, catalyzed by A only, at loadings between 0.2 and 

0.1 mol%. No reaction occurs with cyclohexane105 or n-

decanol.106 Only trace amounts of oxygenated products are seen 

with cyclohexene,105 namely cyclohexene oxide, cyclohexenol 

and cyclohexenone. The aromatic alkene, trans-stilbene, reacts 

to yield the epoxide in 72% selectivity and 97% conversion; 

17% of the remaining products are benzaldehyde and benzoic 

acid, which result from C–C bond breaking. Neither the Baeyer-

Villiger reaction of cyclopentanone,107 nor the oxidation or ox-

idative-coupling of the ortho-directed phenol, 2,4-di-tert-butyl 

phenol,108-110 are catalyzed by A. Similarly, the para-directed 

phenol, 2,6-di-tert-butyl phenol does not react to give the ex-

pected para-quinone or diphenoquinone products.111-112 Appli-

cation of the mixed-metal system of A and FeCl3 does not im-

prove on any of these reactions. 

As the catalytic reaction involving A and FeCl3 is restricted 

mainly to π-activated benzylic substrates, a wider screening of 

these substrates was undertaken (Scheme 3). The reactions were 

assessed by 1H NMR spectroscopy and GC-MS, and in some 

cases were carried out on a preparative scale to isolate the prod-

ucts by column chromatography (Figure 6). 
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Scheme 3. General reaction and a list of π-activated benzylic 

substrates tested in the CuII/FeIII-catalyzed oxygenation reac-

tion. 

 

Figure 6. Application of the mixed-metal A/FeCl3 catalytic system 

to a range of π-activated benzylic hydrocarbon substrates. Reaction 

conditions: 0.15 M substrate, 4 eq TBHP per benzylic position, 0.2 

mol% A, 0.2 mol% FeCl3, stirred MeCN, 60 °C, 16 h (yields 

determined by GC-MS using mesitylene as an internal standard). 

*Reaction carried out at room temperature. †Isolated yields 

reported after performing the reaction on a 1 mmol scale and 

purifying by column chromatography.  

First, a series of simple substituted benzylic substrates was 

tested at catalyst loadings of 0.2 mol%, with heating at 60 °C 

for 16 h. The substrates with high benzylic C–H BDEs, i.e. tol-

uene, para-nitro-toluene and benzyl sulfoxide, are not oxidized. 

Low to moderate conversion is seen for benzyl alcohol (51%), 

ethyl benzene (26%), cumene (20%), bibenzyl (11%), benzyl 

phenyl ether (24%), diphenyl methane (3%), 2-benzyl pyridine 

(21%), and 4-benzyl pyridine (42%). Of these, a few yield sin-

gle carbonyl products with high selectivity: benzyl alcohol af-

fords benzaldehyde (100%); ethyl benzene affords acetophe-

none (90%); benzyl-phenyl ether affords phenyl benzoate 

(69%); diphenyl methane affords benzophenone (100%); and 

both 2- and 4-benzyl pyridines afford the corresponding ben-

zoyl pyridines (100%). Three substrates in particular underwent 

high conversion. Benzyl amine is consumed quantitatively, but 

only affords 28% of the carbonyl product (benzyl amide), with 

benzaldehyde (55%) and benzonitrile (16%) seen as the other 

products. Benzyl methyl ether undergoes 91% conversion and 

is 94% selective for the ester, methyl benzoate. Triphenylme-

thane also undergoes 100% conversion, and affords (tert-bu-

tyl)triphenyl methyl peroxy-ether as the sole product. 

A series of bicyclic benzylic substrates were tested, all of 

which undergo high conversion, with the exception of α-tetra-

lone (40%). The N-heterocyclic compounds indoline and 

1,2,3,4-tetrahydroquinoline both afford the aromatic com-

pounds indole and quinolone quantitatively, with no oxygena-

tion of the substrate taking place following HAA. In contrast, 

the O-containing heterocycle iso-chroman quantitatively af-

fords the mono-ketone product 4-chromanone. Likewise, 94% 

of indane reacts to afford the mono-ketone, indanone with 89% 

selectivity. For 1,2,3,4-tetrahydronaphthalene, 100% of the 

substrate is converted, forming a mixture of the mono-ketone, 

α-tetralone (51%) and para-quinone products 1,4-naphthoqui-

none (9.5%) and 2,3-dihydro-1,4-naphthoquinone. 

The tricyclic benzylic substrates xanthene, fluorene, 9,10-

dihydroanthracene (DHA), and 9,10-dihydrophenanthrene 

were all screened on a preparative scale. All four substrates re-

act with 100% conversion, and the carbonyl products are iso-

lated in high yields: xanthone, 90%; fluorenone, 89%; anthra-

quinone, 87%; and phenanthraquinone, 80%. Only 9,10-dihy-

drophenanthrene required heating at 60 °C.  

Finally, three furan derivatives of benzylic substrates were 

tested, as this would hold some relevance to natural product 

synthesis.113-114 Phthalan reacts quantitatively at room tempera-

ture, with 45% selectivity for the mono-ketone, phthalide. A 

second product was also formed in significant quantity (repre-

senting 30% of the total GC trace). Dihydrobenzofuran only un-

dergoes 44% conversion at 60 °C, to give a mixture of products; 

benzofuran is identified as the major product at 39% selectivity. 

Finally, menthofuran undergoes 75% conversion, but the prod-

ucts could not be identified by GC-MS and the selectivity for 

the major product is low at 34%. 

The benzylic substrates that were screened span a benzylic 

C–H BDE range between 75 and 105 kcal mol–1. Whilst that 

with the lowest BDE (xanthene) undergoes full conversion, and 

that with the highest BDE (toluene) does not react, there is no 

linear correlation between %conversion and BDE between 

these extremes. Likewise, there is neither correlation between 

%conversion and benzylic C–H pKa nor with the ionization en-

ergies of the substrates. Comparing a set of substituted benzylic 

substrates of similar BDE values (85 – 87.5 kcal mol–1) reveals 

that even in a narrow BDE range, there are vast differences in 
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%conversion, which is ascribed to functional group sensitivity. 

The two alkyl-substituted substrates in this sub-set, ethyl ben-

zene and cumene, undergo similar conversion at 26% and 22%, 

respectively. In comparison, the conversion of benzyl alcohol is 

higher (57%) and that of benzylamine is higher still (100%). On 

the other hand, the two ether-containing compounds undergo 

very different conversions, at 33% for benzyl-phenyl ether and 

81% for benzyl-methyl ether. 

Characterization of the catalyst  

Due to the strong paramagnetism exhibited by both complex 

A and FeCl3, structural characterization of the catalytically-ac-

tive species by NMR spectroscopy was not possible. Further-

more, we were unable to grow single crystals of the (pre-)cata-

lyst from a wide range of solvent combinations and crystalliza-

tion conditions and, as such, the structure has not been deter-

mined by X-ray crystallography. 

It was thought that addition of FeCl3 to A might cause: (i) 

trans-metalation to dinuclear FeIII or heterodinuclear CuII/FeIII 

complexes; (ii) the formation of an ate-complex, with 

FeCl3/FeCl4
− incorporated within the CuII macrocycle through 

one or more bridging chloride ligands (see Figure 1), reminis-

cent of dinuclear ZnII macrocycles that bind chloride in the mac-

rocyclic cleft;115 (iii) the formation of CuCl2 which has been 

shown to catalyze the oxygenation reaction (see above).  

In the +ve ion ESI-MS spectrum of a 1:1 mixture of A and 

FeCl3 in MeCN, no ions corresponding to trans-metalated prod-

ucts are seen. Significantly however, a low-intensity ion at 980 

m/z is assigned to the ate-complex [A-FeCl4]
+ (Figure 7) which 

might arise from an A/FeCl3 complex or alternatively, as FeCl3 

is known to form [FeCl2(MeCN)4]
+[FeCl4]

– in MeCN,116 the 

formation of an adduct between A and the [FeCl4]
– anion. A 

further ion is seen at 853 m/z consistent with [A(Cl)2]
+ and sup-

ports the ability of the CuII centers to bind chloride in the pres-

ence of FeCl3. The base peak at 697 m/z is assigned to [KH4L]+ 

and its observation may suggest demetalation and formation of 

CuCl2.  

 

Figure 7. FT-ICR positive ion ESI-MS mass spectrum of a 1:1 so-

lution of A and FeCl3 in CH3CN showing the highest molecular ion 

peak only (simulated spectrum below). 

The electronic absorption spectrum of A in MeCN shows 

three absorption bands at 240, 298 and 367 nm, as well as a 

shoulder at 400 nm (Figure 8). These are assigned to a mixture 

of charge-transfer and π- π* transitions and, with εmax of 30,000 

dm3 mol–1 cm–1 (at 240 nm), these bands would obscure the low-

intensity charge-transfer bands of CuCl2 and FeCl3 (εmax = 2,700 

at 310 nm for CuCl2; 8,300 at 240 nm for FeCl3). Nonetheless, 

the absorption spectrum of A/FeCl3 in MeCN is near-identical 

to that of A and does not support demetalation. 

 

 

Figure 8. Electronic absorption spectra for CuCl2, FeCl3, A, and 

A/FeCl3 at equimolar concentration in MeCN. 

In the cyclic voltammogram (CV) A undergoes two irre-

versible CuII/CuI reduction processes at Ep
c –1.40 and –1.71 V 

vs. Fc+/Fc, and two irreversible CuIII/CuII oxidation processes at 

Ep
a +0.36 and +0.60 V (Figure S55). These step-wise redox pro-

cesses indicate that electronic communication between the two 

metal centers occurs and is consistent with its EPR spectrum 

(see below). FeCl3 undergoes irreversible FeIII/FeII reduction at 

Ep
c –0.56 V, and CuCl2 undergoes reversible CuIII/CuII oxida-

tion at E1/2 +0.11 V, with the cathodic wave appearing at Ep
c 

+0.05 V. In A/FeCl3, a new, irreversible cathodic wave is seen 

in the CV, at Ep
c –0.31 V, approximately midway between the 

cathodic waves of CuCl2 and FeCl3 (Figure S56). The peak-

height of this new wave is directly proportional to the concen-

tration of FeCl3, and increases steadily on addition of FeCl3 in 

portions (Figure S57). In the square-wave voltammogram of the 

mixture (SWV, Figure 9), it is more apparent that this new re-

duction process (Ep
c –0.29 V), with its lower-intensity anodic 

wave on the return scan (Ep
a –0.15 V), resembles the SWV sig-

nal of FeCl3, albeit 166 mV more positive than for FeCl3 meas-

ured in isolation. The presence of even trace amounts CuCl2 

would be immediately obvious in the SWV, due to the nanomo-

lar detection limit inherent with that technique.117-119 The 166 

mV anodic shift of the FeCl3 reduction wave in the SWV is also 

accompanied by a 44 – 88 mV cathodic shift in the oxidation 

waves for A, and therefore lends support to the formation of a 

CuII/FeIII ate-complex.  



7 

 

 

Figure 9. Square-wave voltammograms for CuCl2, FeCl3, A, and 

A/FeCl3. All measured at 124 mV s–1 as 1 mM MeCN solutions in 

0.1 M [nBu4N][PF6], using a glassy-carbon working electrode, Pt 

gauze counter electrode and Ag-wire quasi-reference electrode. 

The EPR spectra of dinuclear CuII Pacman complexes that 

are structurally similar to A have been reported previously.83 

The frozen MeCN/THF solution X-band EPR spectrum of A 

shows a signal consistent with two weakly coupled CuII (S = 1/2) 

ions (Figure S59).120-121 The spectral profile is dominated by an 

axial g splitting synonymous with CuII, plus addition of the 

small exchange coupling gives rise to the weakly-resolved 7-

line hyperfine pattern at low-field, characteristic of coupled 
63,65Cu nuclei (I = 3/2, 100% abundant). A signature half-field 

signal is seen, arising from the forbidden ΔMS = 2 transition of 

the spin triplet (S = 1) formed by coupling of the two CuII ions, 

in agreement with the electrochemical measurements discussed 

above. The X-band EPR spectrum of FeCl3 measured under the 

same conditions features a broad single signal with g = 2, com-

mensurate with an S = 5/2 ferric species with intrinsically minute 

zero-field splitting.122 Mixing equimolar amounts of A and 

FeCl3 produces a spectrum consistent with the sum of the two 

paramagnetic components. The half-field transition is still seen 

and is unperturbed by the presence of FeCl3. Furthermore, there 

is no detectable indication of coupling between the CuII and FeIII 

centers; the stronger coupling between the two CuII centers 

masks any interaction and dominates the spectral profile.  

The Fourier transform of the EXAFS region of the Cu K-

edge X-ray absorption spectrum for A measured in MeCN at 95 

K (Figure 10) is well-reproduced using the crystal structure 

metrics (Table S5). Crystallographic Cu–N distances in the first 

coordination sphere are 1.903(2) and 1.919(3) Å for pyrrolide 

donors, and 1.987(2) and 2.073(3) Å for imine donors and com-

pare well with the fitted EXAFS predicted Cu–N distances of 

1.926, 2.016 and 2.066 Å, respectively. The Cu···Cu separation 

of 3.95 Å in the EXAFS is slightly longer than that determined 

crystallographically (3.6157(6) Å), but in close agreement with 

the distance previously determined by EPR in frozen solution 

(3.8 Å).83 Cu K-edge EXAFS recorded after addition of FeCl3 

to A (Figure 10) further show that the Cu ion remains com-

plexed by the macrocycle. A prominent scattering peak evident 

in the Fourier transform was modelled by including a single Cl 

atom from FeCl3/FeCl4
–. The best fit places this Cl atom 3.524 

Å away from Cu (Table S6). As such, the EPR and EXAFS data 

indicate that A and FeCl3/FeCl4
− form a weakly-associated ad-

duct in solution rather than a formal ate-complex (Figure 1). 

Formation of such a hetero-metallic adduct, resulting in im-

proved catalytic activity, is likely directed by the macrocyclic 

setting. 

The XANES spectra at the Cu K-edge are dominated by the 

effective nuclear charge at Cu, and in this case are persistently 

CuII. The edge position is unaffected by the inclusion of FeCl3, 

and furthermore, the potential changes to the coordination 

sphere about Cu from local square-planar to pyramidal geome-

try due to the presence of Cl have no bearing on the pre-edge 

profile, with no departure from centrosymmetry. The pre-edge 

feature is small and like other Cu K-edge data, is observed as 

small bump or shoulder at the foot of the white line, yielding 

little information. 

 

 

Figure 10. EXAFS for complex A (top) and a 1:1 mixture of A and 

FeCl3 (bottom) following Fourier transform. Measured as MeCN 

solutions at 95 K. Experimental data are black; simulations are red. 

The asterisk marks the new peak observed following addition of 

FeCl3. 

Attempts were made to identify the product of reactions be-

tween either A or A/FeCl3 and TBHP. In all cases, we were un-

able to isolate any pure material, with reactions often leading to 

biphasic mixtures of oily residues. All crystallization attempts 

were unsuccessful. In contrast, the +ion ESI-MS of the reaction 

between A and an excess of TBHP shows an ion at m/z 873 that 

is consistent with the formation of an A(TBHP) complex (Fig-

ure S48), in which we surmise that the TBHP is bound within 
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the macrocyclic cleft. Unfortunately, no further evidence of po-

tentially catalytically active species, especially in the presence 

of FeCl3, could be gained. 

Reaction mechanism, initial rates and simulation of 

pathways 

The nature of catalytic hydrocarbon oxygenation reactions 

remains contentious as to whether the reaction proceeds through 

a reactive metal complex or freely-diffusing radicals. A number 

of iron-oxo complexes were once thought to carry out HAA and 

oxygenation of substrates (Gif chemistry),123-125 but HAA was 

later attributed to hydroxyl radicals, that in turn formed organic 

radicals (i.e. Fenton chemistry).126-129 The oxygenation was 

shown by isotopic labelling130-131 and argon purge experi-

ments100 to proceed through an auto-oxidation mechanism in-

volving O2. 

The formation of highly reactive, freely-diffusing hydroxyl, 

tert-butoxyl or tert-butylperoxyl radicals should lead to HAA 

from substrates with high C–H BDEs, such as toluene or cyclo-

hexane. However, no reactions with these substrates were ob-

served during this work. Furthermore, the rate of the decompo-

sition reaction of the free tert-butoxyl radical by β-scission is 

rapid (k = 2.1 × 104 s–1).132  Thus the generation of tert-butanol 

as a co-product from the reactions studied herein indicates that 

if a tert-butoxyl radical is present, it is closely-associated with, 

and stabilized by, the catalyst. 

Concerning the radical nature of the substrate following 

HAA, quantitative conversion of dihydroanthracene, DHA, is 

seen with high selectivity for anthraquinone (90%) over anthra-

cene (10%). Similarly, the reaction of 9,10-dihydrophenan-

threne produces phenanthraquinone in 80% yield. In a reaction 

mechanism that involves freely-diffusing benzylic radicals, an-

thracene or phenanthrene would be expected as the sole prod-

ucts. 

Reactions catalyzed by A at 80 °C, or by A/FeCl3 at room 

temperature, are unaffected by the presence of O2, with identical 

yields of oxygenated xanthene products seen from reactions 

carried out under air or N2. In contrast to previous studies, no 

homo-coupled 9,9’-bixanthene product is seen, even when the 

reaction is carried out under N2.
100 This provides further evi-

dence that freely-diffusing organic radicals are not present, and 

also indicates that the hydroperoxide is responsible for oxygen-

ation of the substrate, rather than O2 through an auto-catalysis 

radical mechanism.  

Assertions in the literature claim that high selectivity for 

peroxy-ether and ketone products is a signature for a free-radi-

cal mechanism.133 Whilst we have observed high selectivities 

for these products in our work, our other observations show that 

the HAA and oxygenation steps do not result from free radicals. 

As such, the mechanistic probe, 2-methyl-1-phenylpropan-2-yl 

hydroperoxide (MPPH) was used134 as, in this case, the alkoxyl 

free-radical formed following homolytic O–O bond fission in 

MPPH is unstable and undergoes very rapid β-scission, forming 

acetone and benzyl radical (k ~ 2.2 × 108 s–1). In the case of a 

free-radical mechanism, the only products from a reaction in-

volving xanthene and MPPH should therefore be acetone and 

those derived from benzyl free radicals. The room temperature 

reaction between xanthene and 1 eq of MPPH catalyzed by 0.1 

mol% A/FeCl3 (Scheme 4) results in 90% conversion of xan-

thene, whilst that with 2 eq of MPPH results in quantitative con-

version. In line with the TBHP reactions above, the stoichiom-

etry of MPPH influences the product distribution; use of 1 eq of 

MPPH gives ROH (30%), peroxy-ether (37%) and RO (33%) 

whereas 2 eq of MPPH gives ROH (6%), peroxy-ether (52%) 

and RO (42%).  

 

Scheme 4. Reaction of xanthene with one equivalent of MPPH. 

Selectivities / % for xanthene oxidation products are with re-

spect to xanthene. Selectivities / % for MPPOL and benzyl rad-

ical-derived products are with respect to MPPH. 

Significantly, a resonance for the benzylic proton of 2-me-

thyl-1-phenylpropan-2-ol (MPPOL) is seen at 2.72 ppm in the 
1H NMR spectrum, in a ratio of 4:5 with MPPH. The presence 

of significant amounts of MPPOL supports a metal-associated 

mechanism, as coordination of the alkoxide or alkoxyl radical 

to a metal center stabilizes the radical against β-scission. Fur-

thermore, the presence of unreacted MPPH indicates that a 

metal hydroxide is also responsible for HAA, in order to ac-

count for the 90% conversion of the xanthene substrate. How-

ever, analysis of the reaction mixtures involving MPPH by GC-

MS reveals that the benzyl-radical derived products benzalde-

hyde, benzyl alcohol and bibenzyl are also formed, albeit in low 

concentration (approximately 15% compared with xanthene). 

Overall, a predominantly metal-associated mechanism best fits 

with the observations above.  

It is therefore apparent that the oxygenation reactions cata-

lyzed by A/FeCl3 feature elements of both free-radical and rad-

ical-free mechanisms.48,54,135 We therefore suggest that the reac-

tion mechanism in this work involves “well-disguised”, metal-

associated radical species,8-10,133 in which the organic radical of 

the substrate that is formed following HAA is associated with 

the intermediate as a “cage-radical”.136 

To further elucidate the reaction pathways for the overall 

oxidation process, the reaction kinetics were explored in situ by 
1H NMR spectroscopy. Under the standard reaction conditions 

employed earlier (0.15 M xanthene, 0.30 M TBHP, 0.1 mol% 

A and 0.1 mol% FeCl3), the xanthene consumption approxi-

mately fitted to a first-order integrated rate law, albeit coinci-

dently (see below). Deuteration of xanthene at the benzylic 9-

position slows the rate of xanthene consumption marginally 

(Figure 11, Figure S95), indicative of a small primary kinetic 

isotope effect (KIE, νH/νD = 1.5). Deuteration has a pronounced 

impact on the product distribution, with a substantial KIE esti-

mated for the conversion of xanthyl peroxide into xanthydrol / 

ketone (νH/νD ≈ 6). Deuteration at the 9-position of xanthene 

therefore has a more pronounced effect on the second oxidation 

step(s). The oxygenation reaction of d2-xanthene was also mon-

itored by 2H NMR spectroscopy (Figure S96), which confirms 

that tBuOD forms as a co-product. No D2O / HDO was detected. 



9 

 

 

Figure 11. Monitoring oxygenation of d2-xanthene by 4 eq TBHP, 

catalysed by 0.1 mol% A and 0.1 mol% FeCl3 at 300 K in d3-MeCN 

(concentrations determined by 1H NMR integration). Interpolation 

between the data-points is provided solely as an aid to the eye. 

The influence of the electronic properties of the substrate on 

the rate of the reaction was briefly investigated using a series of 

xanthene substrates substituted at the 2-position, (see Figure 

S97). The reaction constant, ρ, is small but positive (1.2 ± 0.2), 

implying only marginal accumulation of electron density at the 

benzylic reaction center, and is consistent with both radical and 

radical-free mechanisms.137-138 

In order to further explore the system, the reactant concen-

trations were varied from the standard conditions. However, 

this rapidly led to major deviations from what had appeared as 

approximately first-order kinetics; indeed, no simple correla-

tions were evident. Initial rates were thus analyzed as a function 

of all components (xanthene, TBHP, A and FeCl3) which were 

independently varied. The initial rate was found to have a linear 

dependency on the initial concentrations of xanthene (albeit 

with a small non-zero intercept), the copper catalyst (A) and the 

FeCl3, suggesting first order kinetics with respect to each com-

ponent (Figures S98, S100 and S101). Importantly, the initial 

rates become independent of copper catalyst (A) and FeCl3 

when the concentration of one pre-catalyst becomes super-stoi-

chiometric over the other. In other words, A and FeCl3 appear 

to operate cooperatively (1:1 ratio). The initial rate as a function 

of the TBHP concentration was approximately first order at low 

concentrations, becoming independent above approximately 

200 mM, indicative of saturation in this reagent (Figure S99). 

The temporal evolution of the xanthene oxygenation reac-

tion, from a series of around 40 experiments in which the initial 

concentrations of reactants was varied, was qualitatively ana-

lyzed to identify trends and relationships between components. 

Three important features arose from these studies: 

(i) The concentration of ROOtBu reaches a maximum value 

at the point that the xanthene substrate is entirely con-

sumed. After this it is converted to ketone (RO) indicative 

of competition between xanthene and ROOtBu for the 

catalyst or a reactive intermediate.  

(ii) ROH and ROOtBu form at identical rates when the initial 

concentrations of xanthene and TBHP are equimolar. In-

creasing the ratio of [TBHP] / [xanthene] results in 

ROOtBu being formed at a faster rate than ROH, indicat-

ing that ROOtBu and ROH arise from separate pathways 

or intermediates. 

(iii) In cases where there is sufficient oxidant for conversion 

of ROH / ROOtBu to ketone (RO), the concentration of 

the alcohol (ROH) reaches a maximum shortly after the 

point where [xanthene] = [ROOtBu]. This final aspect 

was explored in a more quantitative way, by co-plotting 

temporal concentrations of xanthene, ROH and ROOtBu 

(see Figures S102 to S107 and Table S6). 

The three features outlined above were then employed as 

the starting point for a series of models for reaction pathways 

that might account for the overall transformations. Extensive 

kinetic simulations were conducted to explore a very diverse 

series of models of increasing complexity. The failure of any of 

these models to provide a satisfactory global fit to the entire 

data-set (40 experiments) is indicative of the complex and in-

terlinked nature of the reaction pathways. Nonetheless, the most 

effective model tested (outlined schematically in Scheme 5, full 

details provided in the SI) is able to provide a qualitative tool 

for prediction of temporal product distributions as a function of 

all initial concentrations. Consistent with the complexity of the 

system, and the qualitative nature of the model, some initial sets 

of conditions give better fits than others; two examples are 

given in Figure 12. 

 

Scheme 5. Schematic representation of the reaction network em-

ployed to explore the kinetics of oxidation of xanthene, catalyzed 

by a mixture of complex A and FeCl3. Each step in the network 

involves the exogenous oxidant (TBHP). The primary catalyst ini-

tially generated from A + FeCl3 is represented as cat A; a second-

ary, higher oxidation state species, generated by branching from the 

primary catalytic cycle is represented as cat B. Not shown in the 

network is an irreversible oxidative degradation of the primary cat-

alyst and its reversible inhibition by xanthone complexation - see 

SI for full details. 
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Figure 12. Simulation of the xanthene oxygenation reaction, cata-

lyzed by A/FeCl3, using the generalized reaction pathway presented 

in Scheme 5 (full details in Scheme S1). Top: [xanthene]0 = 150 

mM, [TBHP]0 = 300 mM, [A]0 = 150 μM, [FeCl3]0 = 150 μM. Bot-

tom: [xanthene]0 = 75 mM, [TBHP]0 = 300 mM, [A]0 = 150 μM, 

[FeCl3]0 = 150 μM. Simulated data plotted as solid curves, experi-

mental data plotted as dots. 

Conclusions 

The dinuclear copper(II) complexes A – C catalyze the ox-

ygenation of hydrocarbon substrates using hydroperoxide oxi-

dants at elevated temperature. Whilst these complexes undergo 

rapid deactivation, addition of FeCl3 improves the catalyst sta-

bility and efficacy, resulting in much higher turn-over numbers 

and allowing the reaction to proceed at room temperature. A 

combined spectroscopic and voltammetric study indicates that 

the catalyst is likely a weakly-associated adduct, with an FeCl3 

or FeCl4
– moiety bound within the macrocyclic cleft. It is the 

macrocyclic ligand that encourages cooperative action between 

CuII and FeIII in the oxygenation reaction, which is a novel strat-

egy in oxidation catalysis.  

The catalytic reaction involving A/FeCl3 is limited to π-ac-

tivated benzylic substrates, achieving oxygenation in high con-

version for those with low to moderate C–H BDEs. Observation 

of oxygenated products indicates that a non-radical mechanism 

is operative, which is reinforced by N2-purge experiments and 

the use of a MPPH mechanistic probe. However, the high selec-

tivity for ketone, small KIE, and Hammett analysis indicate that 

the mechanism features radical elements, and the mechanism is 

therefore thought to be driven by metal-associated radicals. 

Whilst the initial rates study that was conducted did not pro-

vide definitive insight into the reaction mechanism, a possible, 

albeit complex reaction network (Scheme 5) has been deduced 

through the analysis of qualitative trends and kinetic modelling. 

This is presented in its current form to illustrate the complexity 

of the kinetics of the reaction catalyzed by A/FeCl3 and as a 

basis for more detailed mechanistic work in the future. 
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Table of Contents Synopsis 

A dicopper Pacman complex acts as a cooperative catalyst for the oxygenation of benzylic C-H bonds by 

organic peroxides when activated by ferric chloride. Analytical and solution spectroscopies suggest an 

interaction between the dinuclear copper unit and the chloride of FeCl3 occurs, and a full kinetic modelling 

of the reaction reveals a network of oxidation pathways, via the formation of metal-associated radical 

intermediates. 
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