176 research outputs found

    Thomas Hobbes ja luottamuksen synty

    Get PDF

    Selective interspecific information use in the nest choice of solitary bees

    Get PDF
    Most of the studies on learning in bees have focused on the foraging context; we know little about the preferences and cognitive processes in nest-site selection, especially in solitary bees. The majority of the bee species are solitary and in contrast to eusocial bees, solitary bees\u2019 cognition and social information use have remained largely unstudied. Solitary cavity-nesting mason bees (Osmia spp.) are an ideal system to study interspecific information use in nest choice in the wild as many species share similar nesting requirements. Here, we show that the blue mason bee (O. caerulescens) and the orange-vented mason bee (O. leaiana) examine hallmarks of parasitization of the nests of red mason bees (O. bicornis) before deciding where to establish their own nests. They were also presented with contextual cues (geometric symbols) that could be linked to parasitization by observational learning. Subjects subsequently had the choice of nesting in a nest site marked by the symbol that matched, or did not match, the one seen at the parasitized or healthy nest. We show that the bees copied and rejected the symbol of the examined nest manipulated to exhibit successful and unsuccessful nesting, respectively. We conclude that solitary bees use interspecific information in their nest-site selection. In contrast with current theories of species coexistence, niche overlap between species may dynamically change depending on the observed success of surrounding individuals

    Nonmalignant Formalin-Fixed Paraffin-Embedded Tissues as a Source to Study Germline Variants and Cancer Predisposition : A Systematic Review

    Get PDF
    Background:Archived formalin-fixed paraffin-embedded (FFPE) specimens from nonmalignant tissues derived from cancer patients are a vast and potentially valuable resource for high-quality genotyping analyses and could have a role in establishing inherited cancer risk. Methods:We systematically searched PubMed, Ovid MEDLINE, and Scopus databases for all articles that compared genotyping performance of DNA from nonmalignant FFPE tissue with blood DNA derived from cancer patients irrespective of tumor type. Two independent researchers screened the retrieved studies, removed duplicates, excluded irrelevant studies, and extracted genotyping data from the eligible studies. These studies included, but were not limited to, genotyping technique, reported call rate, and concordance. Results:Thirteen studies were reviewed, in which DNA from nonmalignant FFPE tissues derived from cancer patients was successfully purified and genotyped. All these studies used different approaches for genotyping of DNA from nonmalignant FFPE tissues to amplify single nucleotide polymorphisms (SNPs) and to estimate of loss of heterozygosity. The concordance between genotypes from nonmalignant FFPE tissues and blood derived from cancer patients was observed to be high, whereas the call rate of the tested SNPs was not reported in all included studies. Conclusion:This review illustrates that DNA from nonmalignant FFPE tissues derived from cancer patients can serve as an alternative and reliable source for assessment of germline DNA for various purposes, including assessment of cancer predisposition.Peer reviewe

    The effects of drainage and restoration of pine mires on habitat structure, vegetation and ants

    Get PDF
    Habitat loss and degradation are the main threats to biodiversity worldwide. For example, nearly 80% of peatlands in southern Finland have been drained. There is thus a need to safeguard the remaining pristine mires and to restore degraded ones. Ants play a pivotal role in many ecosystems and like many keystone plant species, shape ecosystem conditions for other biota. The effects of mire restoration and subsequent vegetation succession on ants, however, are poorly understood. We inventoried tree stands, vegetation, water-table level, and ants (with pitfall traps) in nine mires in southern Finland to explore differences in habitats, vegetation and ant assemblages among pristine, drained (30-40 years ago) and recently restored (1-3 years ago) pine mires. We expected that restoring the water-table level by ditch filling and reconstructing sparse tree stands by cuttings will recover mire vegetation and ants. We found predictable responses in habitat structure, floristic composition and ant assemblage structure both to drainage and restoration. However, for mire-specialist ants the results were variable and longer-term monitoring is needed to confirm the success of restoration since these social insects establish perennial colonies with long colony cycles. We conclude that restoring the water-table level and tree stand structure seem to recover the characteristic vegetation and ant assemblages in the short term. This recovery was likely enhanced because drained mires still had both acrotelm and catotelm, and connectedness was still reasonable for mire organisms to recolonize the restored mires either from local refugia or from populations of nearby mires.Peer reviewe

    Data-driven comorbidity analysis of 100 common disorders reveals patient subgroups with differing mortality risks and laboratory correlates

    Get PDF
    The populational heterogeneity of a disease, in part due to comorbidity, poses several complexities. Individual comorbidity profiles, on the other hand, contain useful information to refine phenotyping, prognostication, and risk assessment, and they provide clues to underlying biology. Nevertheless, the spectrum and the implications of the diagnosis profiles remain largely uncharted. Here we mapped comorbidity patterns in 100 common diseases using 4-year retrospective data from 526,779 patients and developed an online tool to visualize the results. Our analysis exposed disease-specific patient subgroups with distinctive diagnosis patterns, survival functions, and laboratory correlates. Computational modeling and real-world data shed light on the structure, variation, and relevance of populational comorbidity patterns, paving the way for improved diagnostics, risk assessment, and individualization of care. Variation in outcomes and biological correlates of a disease emphasizes the importance of evaluating the generalizability of current treatment strategies, as well as considering the limitations that selective inclusion criteria pose on clinical trials.Peer reviewe

    Ecological and evolutionary consequences of selective interspecific information use

    Get PDF
    Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered

    Field-realistic acute exposure to glyphosate-based herbicide impairs fine-color discrimination in bumblebees

    Get PDF
    Pollinator decline is a grave challenge worldwide. One of the main culprits for this decline is the widespread use of, and pollinators' chronic exposure to, agrochemicals. Here, we examined the effect of a field-realistic dose of the world's most commonly used pesticide, glyphosate-based herbicide (GBH), on bumblebee cognition. We experimentally tested bumblebee (Bombus terrestris) color and scent discrimination using acute GBH exposure, approximating a field-realistic dose from a day's foraging in a patch recently sprayed with GBH. In a 10-color discrimination experiment with five learning bouts, GBH treated bumblebees' learning rate fell to zero by third learning bout, whereas the control bees increased their performance in the last two bouts. In the memory test, the GBH treated bumblebees performed to near chance level, indicating that they had lost everything they had learned during the learning bouts, while the control bees were performing close to the level in their last learning bout. However, GBH did not affect bees' learning in a 2-color or 10-odor discrimination experiment, which suggests that the impact is limited to fine color learning and does not necessarily generalize to less specific tasks or other modalities. These results indicate that the widely used pesticide damages bumblebees' fine-color discrimination, which is essential to the pollinator's individual success and to colony fitness in complex foraging environments. Hence, our study suggests that acute sublethal exposure to GBH poses a greater threat to pollination-based ecosystem services than previously thought, and that tests for learning and memory should be integrated into pesticide risk assessment

    Scrutiny of the CHRNA5-CHRNA3-CHRNB4 smoking behavior locus reveals a novel association with alcohol use in a Finnish population based study

    Get PDF
    The CHRNA5-CHRNA3-CHRNB4 gene cluster on chromosome 15q25.1 encoding the cholinergic nicotinic receptor subunits is robustly associated with smoking behavior and nicotine dependence. Only a few studies to date have examined the locus with alcohol related traits and found evidence of association with alcohol abuse and dependence. Our main goal was to examine the role of three intensively studied single nucleotide polymorphisms, rs16969968, rs578776 and rs588765, tagging three distinct loci, in alcohol use. Our sample was drawn from two independent Finnish population-based surveys, the National FINRISK Study and the Health 2000 (Health Examination) Survey. The combined sample included a total of 32,592 adult Finns (54% women) of whom 8,356 were assessed for cigarettes per day (CPD). Data on alcohol use were available for 31,812 individuals. We detected a novel association between rs588765 and alcohol use defined as abstainers and low-frequency drinkers versus drinkers (OR=1.15, p=0.00007). Additionally, we provide precise estimates of strength of the association between the three loci and smoking quantity in a very large population based sample. As a conclusion, our results provide further evidence for the nicotine-specific role of rs16969968 (locus 1). Further, our data suggest that the effect of rs588765 (locus 3) may be specific to alcohol use as the effect is seen also in never smokers
    • 

    corecore