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Data‑driven comorbidity analysis 
of 100 common disorders reveals 
patient subgroups with differing 
mortality risks and laboratory 
correlates
Miika Koskinen 1,2,3*, Jani K. Salmi3, Anu Loukola 2, Mika J. Mäkelä 4, Juha Sinisalo 1,5, 
Olli Carpén 1,2,6,7 & Risto Renkonen 1,6,7

The populational heterogeneity of a disease, in part due to comorbidity, poses several complexities. 
Individual comorbidity profiles, on the other hand, contain useful information to refine phenotyping, 
prognostication, and risk assessment, and they provide clues to underlying biology. Nevertheless, 
the spectrum and the implications of the diagnosis profiles remain largely uncharted. Here we 
mapped comorbidity patterns in 100 common diseases using 4‑year retrospective data from 526,779 
patients and developed an online tool to visualize the results. Our analysis exposed disease‑specific 
patient subgroups with distinctive diagnosis patterns, survival functions, and laboratory correlates. 
Computational modeling and real‑world data shed light on the structure, variation, and relevance of 
populational comorbidity patterns, paving the way for improved diagnostics, risk assessment, and 
individualization of care. Variation in outcomes and biological correlates of a disease emphasizes the 
importance of evaluating the generalizability of current treatment strategies, as well as considering 
the limitations that selective inclusion criteria pose on clinical trials.

Appreciation of disease heterogeneity in a patient population is a prerequisite of and the grand goal of achieving 
personalized care. Heterogeneity, which is partly attributable to comorbidity, complicates both clinical practice 
and determination of etiological factors of a disease. Concomitant diseases represent statistical  associations1–7, 
shared genetic risks, and biochemical  pathways8–15. Such concurrent effects and systemic interactions bring vari-
ation and complexity in symptoms and  outcome16. Therefore, longitudinal real-world data is valuable in refining 
 phenotypes17 crucial for personalizing care and discovering etiology.

Comorbidity complicates interventions, predisposes to suboptimal therapies, and requires more services 
from healthcare  systems7,18–21. Current therapeutic practices are often based on clinical trials that may exclude 
patients with  comorbidities22 and thus lack real-world complexity. Instead of clinical presentation, much of 
comorbidity research focuses on relations between diagnostic  codes1,2,4,5,8,23. This approach has revealed disease 
progression sequences and dependency networks between diagnoses, as well as associations between comorbidi-
ties and variables such as age,  sex4,5, and risk of  death24. Focusing on individuals, the burden of comorbidity has 
been assessed with univariate scores like  Charlson25 or  Elixhauser26 Comorbidity Indices. The recent focus on 
multivariate analysis and machine learning methodology, including clustering  techniques16,27, has been a crucial 
step forward. Still, population diversity and implications of various diagnostic profiles using large-scale clinical 
data from everyday practice remain largely uncharted.

Here we investigated four-year follow-up data of 526,779 individuals representing the 100 most common 
diagnoses among 1.28 million patients in HUS Helsinki University Hospital (HUS), Finland. We wanted to 
examine, whether individual comorbidity profiles form population structure revealing patient subgroups, given 
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an index disease; and whether subgroups differ in mortality risk and associations with clinical laboratory data. 
To illustrate the approach, we highlight two diagnoses, asthma (J45) and atrial fibrillation (I48). Comprehensive 
results can be searched online at https:// hus100. med. helsi nki. fi.

Results
One hundred most common diagnoses. Initially, for the 100 most frequent diagnoses found in the 
patient registry, we created corresponding datasets for each index disease (Fig. 1). In frequency, primary hyper-
tension ranked first. Table 1 lists the top 30, and the full list of 100 diagnoses is provided in Supplementary 
Table 1.

Figure 1.  Data preprocessing scheme from original records to 100 index disease datasets.

Table 1.  The most common ICD-10 diagnoses, with sex- and age distributions.

Rank Code Description Patients

Women Men

%

Age, percentiles

25th 50th 75th 25th 50th 75th

1 I10 Essential (primary) hypertension 87,273 53 60 69 79 56 65 74

2 J06 Acute upper respiratory infections at multiple and 
unspecified sites 70,515 52 2 8 35 1 4 18

3 M54 Dorsalgia [back pain] 66,696 59 34 48 62 35 48 61

4 J18 Pneumonia, organism unspecified 61,383 47 37 63 78 41 64 76

5 J45 Asthma 56,301 55 16 44 62 7 15 53

6 H25 Senile cataract 55,387 62 68 75 80 66 73 79

7 M79 Other soft tissue disorders, not elsewhere classified 54,662 60 34 50 63 30 49 65

8 F32 Depressive episode 54,168 63 16 19 37 17 25 45

9 I48 Atrial fibrillation and flutter 54,048 45 67 75 82 59 68 76

10 M17 Gonarthrosis [arthrosis of knee] 44,729 63 59 67 75 56 65 72

11 H66 Suppurative and unspecified otitis media 43,433 47 2 4 16 1 3 7

12 H90 Conductive and sensorineural hearing loss 43,345 54 34 59 73 19 58 72

13 G47 Sleep disorders 42,894 34 49 58 66 46 55 64

14 I25 Chronic ischemic heart disease 42,746 36 66 75 82 62 70 77

15 A09 Diarrhea and gastroenteritis of presumed infectious 
origin 40,501 54 6 32 65 3 23 55

16 F41 Other anxiety disorders 36,647 66 16 21 35 17 25 40

17 E11 Non-insulin-dependent diabetes mellitus 36,537 42 59 68 76 58 66 72

18 N39 Other disorders of urinary system 36,471 81 43 61 74 58 70 77

19 M25 Other joint disorders, not elsewhere classified 35,719 60 27 42 56 26 41 54

20 K57 Diverticular disease of intestine 33,404 59 58 67 76 53 64 73

21 M51 Other intervertebral disc disorders 33,299 54 38 48 59 38 48 57

22 I50 Heart failure 30,504 49 72 80 86 64 73 80

23 L20 Atopic dermatitis 30,063 54 5 21 39 2 8 30

24 N10 Acute tubulo-interstitial nephritis 30,058 64 19 54 76 48 66 77

25 K80 Cholelithiasis 29,707 65 42 57 70 49 63 74

26 I63 Cerebral infarction 29,281 47 60 72 81 55 66 75

27 M75 Shoulder lesions 28,915 53 47 54 61 47 55 62

28 K40 Inguinal hernia 28,275 14 35 63 76 46 62 72

29 F33 Recurrent depressive disorder 28,011 68 28 39 51 29 41 52

30 F10 Mental and behavioral disorders due to use of 
alcohol 26,849 33 25 42 55 35 47 57

https://hus100.med.helsinki.fi
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Comorbidity analysis. Patients with multiple diagnoses during the 4-year follow-up appeared frequently. 
In the disease-specific datasets, 65% of patients had more than one, and 41% more than two distinct diagnoses. 
The number of comorbidities was largest in patients aged 70–89 (Fig. 2). Of 100 index diseases, in 99, the median 
diagnoses per patient numbered two or more, maximally five in disorders of lipoprotein metabolism and other 
lipidaemias (E78), heart failure (I50), and angina pectoris (I20). Only in the group of acute appendicitis (K35) 
was the median number one.

For each 100 index diseases, we mapped the variety of patients’ multivariate diagnostic profiles by a robust 
data-driven analysis scheme, with 2–31 patient subgroups per disease. A median 20% (0–39%) of patients were 
without clear cluster assignments and excluded as outliers. Reliability and associations with laboratory values 
and survival we computed for each cluster.

Comorbidity in asthma. We chose asthma (J45) as one disease example. Age-specific number of diagnoses 
(Fig. 3a) reflects treatment for asthma in the Finnish health care system. Treatment for children is organized 
mainly in specialized care. At the age of 16 to 18, patients are typically remitted to primary care services, with 
only the more severe cases treated at pulmonary clinics, explaining the sharp decrease at adolescence in the 
number of patients within secondary and tertiary care. Asthma is common across all ages but demonstrates a 
clear sex-dependent pattern: among patients with a new asthma diagnosis, males dominate in early childhood, 
but after age 15, females dominate.

Figure 3b demonstrates the heterogeneity of the asthma phenotypes in the population and in the 27 sub-
groups. The most common comorbidities included disorders of nasal function (rhinosinusitis, allergic rhinitis) 
and several atopic diseases. In clinical work, diagnosis is typically either an allergy-driven (J45.0), non-atopic 
(J45.1), or undefined asthma (J45). These diagnoses occurred in distinct clusters (Fig. 3). Some clusters fol-
lowed the traditional allergic vs. non-allergic pattern, whereas others represented mixed asthma phenotypes. 
For example, Cluster 1 comprises young patients less than age 40 with rhinitis as their main co-morbidity, 
Cluster 2 comprises patients with allergic asthma but lower sensitization levels, and Cluster 5 patients with 
several atopic comorbidities including dermatitis and rhinitis with high eosinophils. Of the non-allergic asthma 
patients, Cluster 10 comprises patients over age 50 with a mixed phenotype of asthma and chronic obstructive 
pulmonary disease (COPD), Cluster 11, females over 40 with chronic rhinosinusitis, and Cluster 20, obese 
50- to 70-year-old patients with sleep apnea, high blood pressure, and osteoarthritis. We detected unexpected 
differences between the clusters, for example, in mean corpuscular volume (MCV) of erythrocytes and in renal 
function measurements, these, regarding survival, likely associated with severe infections (see the online tool 
https:// hus100. med. helsi nki. fi).

Comorbidity in atrial fibrillation. Our second disease example is atrial fibrillation (I48), the registry’s 
ninth most common diagnosis. Clustering analysis resulted in 31 comorbidity subgroups (Fig. 4a)—the largest 
number of subgroups among all of the 100 diseases—often with distinctive characteristics such as hypertension, 
the males being of younger ages, or stroke. In the cohort, atrial fibrillation is notable in older age, (Fig. 4b) how-
ever, in cluster 2 the shape of the age distribution is distinctive raising very early for atrial fibrillation patients, 
at 30 years, and peaking also at earlier age. The overall peaking of age distribution is ten years later in women 
than in men (Fig. 4c). The most common concomitant diagnoses include other cardiac arrythmias (I49), heart 
failure (I50), hypertension (I10), sleep disorders (G47), and mental and behavioural disorders due to use of 
alcohol (F10), i.e. known causes or comorbidities of atrial fibrillation. Age distribution of concomitant diagno-

Figure 2.  Number of differing diagnoses during 4-yr follow-up in age groups, with only diagnoses among the 
100 most common counted.

https://hus100.med.helsinki.fi
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Figure 3.  Asthma. (a) Age and sex-distribution of diagnoses among patients in secondary and tertiary care. 
(b) Heterogeneity of asthma patients in 27 clusters represented in two-dimensional latent space of VAE model. 
Clusters mentioned in the text are circled. (c) Cluster-specific characteristics presented by statistically significant 
logarithmic odds ratios for demographics and diagnoses. (d) Distributions of laboratory results that differ 
statistically significantly (FDR 0.1%) between a specific cluster and the rest of the patients (only selected tests 
shown).
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ses (according to age groups) showed age-dependency of comorbidities: in 20- to 39-year-olds, other cardiac 
arrhythmias were frequent, while in 40- to 89-year-olds, hypertension and heart failure were the most common 
comorbidities. Patients in Cluster 1 (Fig. 4d), on the other hand, had other arrhythmias (I49) and were of a rela-
tively young age (30–49 years), and these had the highest survival rate (90% over 4 years). Patients in Cluster 10, 
for example, were characteristically diagnosed with heart failure and ischaemic heart disease and were associ-
ated with the shortest life expectancy (40% survived beyond 4 years) after initial diagnosis. Notably, the clusters 
showed major differences in survival rates (Fig. 4e). Large variability in survival between clusters occurred even 

Figure 4.  Atrial fibrillation. (a) Disease-specific comorbidity clusters represented in two-dimensional latent 
space of VAE model. (b) Age distribution of the clusters, and (c) age- and sex distributions of I48 diagnosis 
among original 1 M patients (d) The prevalence of the 10 most frequent diagnoses in comorbidity clusters 
shown on a heat map. Some diagnoses, e.g. other cardiac arrythmias, diabetes mellitus, and diverticular 
disease of the intestine, demonstrate cluster specificity, whereas pneumonia, heart failure, hypertension, and 
ischemic heart disease are more widely distributed across clusters. (e) Kaplan–Meier plot showing variation in 
cluster-specific survival rates. (f) Distribution of laboratory measurements of selected tests. Only clusters with 
statistically significant (FDR 0.1%) results shown.
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when considering only one age group and gender (Supplementary Fig. 1). Distribution of laboratory measure-
ments (Fig. 4f) varied between clusters. For example, the cluster 12 had only very small Troponine-T values, but 
most of the other clusters had wide range of Troponine-T values.

Our third example is depression, a growing problem among adolescents. In our material, analysis of the 
age- and gender-related incidence of depressive episodes (F32) demonstrated a sharp peak in female patients 
in their late teens, with the highest number at age 17 (Supplementary Fig. 2). Incidence was almost three-fold 
that of males at a similar age, and five-fold or more that of females over 30 or under 12. Reasons for this peak 
are apparently multifaceted, combining biological and societal factors, and also factors related to health care 
organization, which calls for further analysis.

Discussion
In this study we show that data-driven diagnostic code-based clustering uncovers patient subgroups that show 
significant differences in diagnosis and demographic characteristics, in survival, and in potential biological asso-
ciations. Our approach demonstrates that underutilized health-record information can help to identify patient 
groups needing different types of intervention, including follow-up or clinical care.

To exemplify, asthma is an umbrella diagnosis for several phenotypes such as allergic, non-allergic, and 
eosinophilic asthma. For such a polygenic multifactorial disease, grouping and categorization is generally chal-
lenging. One method for subcategorization is to identify disease-associated traits such as allergic sensitization, 
impaired lung function, or predisposition to exacerbations. By using diagnostic history data, we found 27 comor-
bidity clusters, in other words asthma subgroups. Although age was not a variable that we used for clustering, 
age-associations of diagnoses were often evident, as was association with mortality. We unexpectedly found large, 
statistically significant inter-cluster differences in some laboratory parameters, ones like eosinophils or renal 
function that require further assessment. These phenotypic differences may serve as a means to characterize 
new meaningful subgroups of asthma. Comorbidity clustering results in a more detailed picture of the patient’s 
clinical profile than does one diagnosis alone. For improved asthma subgrouping, we plan to extend the analysis 
by combining lung-function findings and data on exacerbations, medication, and environmental exposure, 
making hypothetically possible the detection of new asthma types. Moreover, many more comorbidities could 
be included than our current 100 diseases.

Atrial fibrillation has phenotypically different presentations. It usually starts with paroxysmal episodes, which 
become more frequent and long-lasting over time, finally evolving into chronic atrial fibrillation. The etiology of 
atrial fibrillation is still largely unknown, but myocardial fibrosis induced by various pathologic conditions plays 
an important role. Many common diseases linked to myocardial dysfunction, such as hypertension and heart 
failure, are comorbidities for atrial  fibrillation28. Here, ICD10 comorbidity-based clustering of atrial fibrillation 
resulted in 31 groups. These clusters differed significantly in etiology and in mortality (Fig. 4a–e), but inside a 
quite narrow age range, in line with previous findings. Cluster 2 contained many young men without any distinct 
comorbidities. However, laboratory values such as C-reactive protein, the myocardial stress marker proBNP, and 
the myocardial injury marker troponin T showed significantly higher levels (FDR 0.1%) in Cluster 2 than in other 
clusters. This group would thus be very interesting for further study of background aspects of early-onset atrial 
fibrillation. Clusters need further evaluation and testing in prospective cohorts; early identification of patients 
in certain subgroups could guide clinicians in more personalized treatment and better outcomes.

Notably, the majority of patients (65%) had at least one concomitant diagnosis, and for 99 of the 100 diseases, 
our median number of diagnoses per patient was two or more. This demonstrates the impact of comorbidity in 
clinical practice. To individualize treatment based on the whole spectrum of disorders and while considering the 
distinct features, impacts, and interactions of each disease and medication is extremely challenging. Statistical 
models are therefore necessary, first in understanding and mapping populational heterogeneity and highlighting 
the significance of differing comorbidity profiles, and second in supporting decision-making.

For mapping a population’s phenotypic variability, large-scale, longitudinal, and multimodal data are essential. 
Large data repositories can help in detailing subtypes and rare associations not obvious in small cohorts or at 
individual patient level. Hospitals, biobanks, research institutions, and insurance- and governmental agencies 
worldwide already possess registries and data lakes. These are, however, utilized in medical research at a level 
far below their potential. The primary motivation for our work was to provide an overview of the possibilities 
that large-scale clinical data obtained in daily practice can provide for phenotyping. The usefulness of cluster-
ing has been shown earlier, but in specific  diseases16,27, and by use of a few carefully selected variables that may 
not always be part of typical acquisition. Our study extends previous studies by the spectrum of diseases and 
diversity of data (longitudinal diagnostic data, survival data, and 100 of the most frequent laboratory tests 
selected uniquely for each index disease). For comprehensive analysis, we provide an online tool for browsing 
the extensive set of results.

Clinical data collections like those of this project are characteristically high-dimensional, longitudinal, incom-
plete, sampled at irregular intervals, and representing differing modalities and statistical distributions that chal-
lenge any methodology. Here, the chosen VAE model supported a discovery type of study, interpretability by 
visualization of populational structure in the two-dimensional latent space, and processing of a large amount 
of data with a reasonable computation effort. A weakness of our study is the origin of our health records; the 
records cover secondary-tertiary healthcare information but lack primary-care data.

In conclusion, longitudinal clinical profiles combined with advanced data analytics identified refined phe-
notypes in all 100 common disorders. We found that patients with the same underlying disease but differing 
comorbidity profiles have distinct mortality risks and clinical parameters, which could call for different therapeu-
tic choices. Modeling the heterogeneity and the implications of differing patient profiles can advance individual 
health-risk assessment, treatment targeting, and follow-up strategies, as well as improve prognostication, best 
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practices, planning of healthcare resources, and lead to etiological discoveries. Whereas most of the current 
treatment guidelines are based on clinical trials with stringent exclusion criteria for comorbidities, we demon-
strate here with real-world data that comorbidity data linked to laboratory- and survival information can add 
to subgroup analysis a significant new level of information.

Methods
Diagnostic and demographic data. We retrieved ICD-10 codes, numerically expressed laboratory 
results, age, sex, date of last contact, and date of death from electronic health records of Helsinki University Hos-
pital (HUS), using the data lake infrastructure that contains real-world data generated in the hospital, updated 
virtually in real time. HUS is a secondary-tertiary healthcare provider in all medical specialties that serves 1.7 
million inhabitants in the Uusimaa region in Finland. The data were based on 1.28 million patients diagnosed 
during a 10-year period between 2009 and 2018. The 100 most common diagnoses (index diseases) encom-
passed 989,552 (77.6%) patients. We retrieved all diagnoses within a four-year follow-up period beginning from 
the first occurrence of the index disease in the database. To enable coverage of the full four-year follow-up 
period, we selected patients who had been diagnosed initially in 2015 or earlier. Further, to ensure reliability of 
the first date of index disease diagnosis, we selected patients who were not diagnosed with that specific index 
disease during a two-year period of 2009 and 2010. The total number of individual patients across the 100 data-
sets was 526,779, which we divided into 100 non-exclusive index-disease groups, each comprising from 4319 to 
44039 patients (Fig. 1).

ICD-10 codes were expressed at the categorical level of three characters. As an exception, for asthma J45, 
codes J45.0, J45.1 and J45.8 were also extracted. Codes related to pregnancy and childbirth (O00–O99, P00–P96), 
malformations, and abnormal findings (Q00–Q99, R00–R99), external causes (S00–T98, V01–Y98), and health 
status and administration (Z00–Z99) we  excluded1. Data quality we controlled by verifying patient uniqueness 
and correct ICD-10 formatting; entries not fulfilling the requirements we removed, with codes for symptoms and 
causes treated equally. Following the General Data Protection Regulation (GDPR), the cohort did not include 
patients who had denied the registry holder (HUS) the use of their data for research purposes. Identity informa-
tion was pseudonymized, and dates expressed according to a relative timescale of days from birth.

Patients’ diagnoses in the follow-up period we expressed as a binary feature vector, in which vector elements 
indicated ICD-10 codes during the follow-up period. Those diagnoses with a prevalence less than 1% in the 
index group we discarded, resulting in final feature vector dimensionalities between 21 and 88, depending on 
index disease.

Clustering. For robustness and reliability, cluster analysis with disease-specific binary feature vectors was 
done in two phases. The first phase included dimensionality reduction using a variational autoencoder model 
(VAE)29 followed by clustering in the continuous latent space of the model. VAE training and clustering took 
place first for a dataset that contained N patients with a specific index disease, and then we repeated the proce-
dure independently 100 times after randomly subsampling N/2 patients at each run. The VAE model we imple-
mented according to Keras documentation (https:// keras. io/), and trained in 30,000 epochs. For simplicity, the 
dimensionality of the intermediate layer was at 40 and the latent representation at 2. Vectors in the latent space 
of the trained VAE model we clustered using a density-based HDBSCAN  algorithm30 with a minimum cluster 
size (min_cluster_size) of N/100, and the parameter min_samples set at 5. No index-disease-specific optimization 
of parameters was done. The HDBSCAN algorithm includes outlier detection, and thus for some of the feature 
vectors not located in the dense regions, no cluster labels were assigned.

In the second phase, we used a modified version of a consensus  index31 to quantify the robustness of the 
clustering that was done with all N patients. In short, corresponding to subsampled dataset h, let M(h) and I(h) 
denote N × N matrices, where the entries are defined as:

Our consensus matrix represents the proportion of runs in which any two feature vectors (or patients) were 
assigned to the same cluster:

The consensus matrix we constructed by using the cluster labels of the 100 subsampled datasets. Let Ck denote 
indices of samples in the dataset of N patients assigned to cluster k. The consensus index with respect to cluster 
k has the form:

(1)M(h)
(

i, j
)

=

{

1 if items i and j belong to the same cluster in dataset h,
0 otherwise

(2)I(h)
(

i, j
)

=

{

1 if items i and j are present in the dataset h,
0 otherwise

(3)M
(

i, j
)

=

∑

h M
(h)

(

i, j
)

∑

h I
(h)

(

i, j
)

(4)
m(k) =

1

Nk(Nk − 1)/2

∑

i, j ∈ Ck

i < j

M
(

i, j
)

https://keras.io/
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The statistical significance (p < 0.001) of the consensus index we estimated using a permutation test. Null 
distribution was constructed by permuting cluster assignments of samples randomly 5000 times while keeping 
the consensus matrix fixed. Thereafter, feature vectors assigned to non-significant clusters we marked as outliers.

Cluster characteristics. Diagnosis frequency within a cluster, as well as  log10 odds ratio between a cluster 
and the rest of the patients (including outliers) we computed for each index disease cohort. Statistical assess-
ment included 2 × 2 contingency table analysis (https:// www. stats models. org/) with a 0.1% false discovery rate 
(FDR) using the Benjamini–Hochberg  procedure32 in 174,144 comparisons across index diseases, clusters, and 
variables.

Survival analysis. For each cluster of patients, survival function and 95% confidence were estimated by 
Kaplan–Meier analysis. Data utilized were the date of the first occurrence of an index disease, the date of the last 
encounter, and the date of death.

Clinical laboratory data. Laboratory data collected from the database were limited to the 100 most com-
mon tests separately for each index disease. We selected for further analysis those measurements at the first 
occurrence of an index disease with a maximum of ± 6 months tolerance. Several numerical laboratory results 
we compared between patients assigned to a given cluster and the rest of the patients (per index disease), by 
using a two-sided Mann–Whitney U test with a 0.1% FDR (101,087 comparisons). The required minimum 
number of observations per laboratory test was set for both compared groups at 20. Moreover, for visualizing 
cluster-specific characteristics (online), we computed the common language effect  size33, i.e. the probability that 
a randomly selected laboratory result is larger in patients in a specific cluster than in other patients.

Ethical aspects. No ethical permission was required according to the Finnish Medical Research Act for the 
secondary use of medical records. Following national and EU legislation, the study was based on approval of 
HUS Helsinki University Hospital (permission HUS/466/2019).

Data availability
Due to national legislation, restrictions apply to the availability of clinical data at individual level, which were 
used with the permission of HUS Helsinki University Hospital. For data permission inquiries, please contact 
tietopalvelu@hus.fi.
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