59 research outputs found

    Preliminary reference values for electrocardiography, echocardiography and myocardial morphometry in the European brown hare (Lepus europaeus)

    Get PDF
    The study aimed at defining reference values for electrocardiographic (ECG) and echocardiographic parameters as well as macroscopic dimensions of the heart and microscopic dimensions of cardiomyocytes in the European brown hare. The studies were conducted on 30 adult, clinically healthy hares of either sex caught in Poland. ECG and echocardiography were performed supravitally on anaesthetized hares. After euthanasia, gross and microscopic myocardial and cardiomyocyte dimensions were determined. Heart rate amounted to 140 ± 37.5 beats/min, the leading rhythm involved the sinus rhythm. P wave time was 26 ± 5 ms, PQ time was 80 ms, QRS time was 29 ± 3.5 ms, and ST was 97.5 ± 7 ms. Echocardiography determined a left ventricular wall end-diastolic diameter of 8.6 ± 2.0 mm and an intraventricular septum end-diastolic diameter of 5.75 ± 1.0 mm. The thickness of the interventricular septum corresponded to that of the free wall of the left ventricle, a finding consistent with physiological hypertrophy. Preliminary reference values were established for echocardiography. The findings were similar to those obtained at necropsy. The ECG and echocardiographic studies represent the first supravital examination of cardiac function in the hare. The obtained results illustrate adaptation of hare's myocardium to its mode of life. The cardiac findings resemble the athlete's heart syndrome described in humans. The findings may prove useful in further studies on the physiology of the cardio-vascular system in the hare

    Molecular profiling of signet ring cell colorectal cancer provides a strong rationale for genomic targeted and immune checkpoint inhibitor therapies

    Get PDF
    We would like to thank all patients whose samples were used in this study. We are also thankful to the Northern Ireland Biobank and Grampian Biorepository for providing us with tissue blocks and patient data; and Dr HG Coleman (Queen’s University Belfast) for her advice on statistical analyses. This work has been carried out with financial support from Cancer Research UK (grant: C11512/A18067), Experimental Cancer Medicine Centre Network (grant: C36697/A15590 from Cancer Research UK and the NI Health and Social Care Research and Development Division), the Sean Crummey Memorial Fund and the Tom Simms Memorial Fund. The Northern Ireland Biobank is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast CRUK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory which is responsible for creating resources for the Northern Ireland Biobank has received funding from Cancer Research UK, Friends of the Cancer Centre and Sean Crummey Foundation.Peer reviewedPublisher PD

    K201 (JTV-519) alters the spatiotemporal properties of diastolic Ca2+ release and the associated diastolic contraction during β-adrenergic stimulation in rat ventricular cardiomyocytes

    Get PDF
    K201 has previously been shown to reduce diastolic contractions in vivo during β-adrenergic stimulation and elevated extracellular calcium concentration ([Ca2+]o). The present study characterised the effect of K201 on electrically stimulated and spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release and contractile events in isolated rat cardiomyocytes during β-adrenergic stimulation and elevated [Ca2+]o. Parallel experiments using confocal microscopy examined spontaneous diastolic Ca2+ release events at an enhanced spatiotemporal resolution. 1.0 μmol/L K201 in the presence of 150 nmol/L isoproterenol (ISO) and 4.75 mmol/L [Ca2+]o significantly decreased the amplitude of diastolic contractions to ~16% of control levels. The stimulated free Ca2+ transient amplitude was significantly reduced, but stimulated cell shortening was not significantly altered. When intracellular buffering was taken into account, K201 led to an increase in action potential-induced SR Ca2+ release. Myofilament sensitivity to Ca2+ was not changed by K201. Confocal microscopy revealed diastolic events composed of multiple Ca2+ waves (2–3) originating at various points along the cardiomyocyte length during each diastolic period. 1.0 μmol/L K201 significantly reduced the (a) frequency of diastolic events and (b) initiation points/diastolic interval in the remaining diastolic events to 61% and 71% of control levels respectively. 1.0 μmol/L K201 can reduce the probability of spontaneous diastolic Ca2+ release and their associated contractions which may limit the propensity for the contractile dysfunction observed in vivo

    Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII a in epileptic hippocampal neurons

    Get PDF
    Purpose: To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II a expression in a model of epileptic neurons were investigated. Method: Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II a protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results: The CaMK II a expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion: GLP may inhibit calcium overload and promote CaMK II a expression to protect epileptic neuron

    The effects of over-expression of the FK506-binding protein FKBP12.6 on K+ currents in adult rabbit ventricular myocytes

    Get PDF
    This study examines the effects of the intracellular protein FKBP12.6 on action potential and associated K+ currents in isolated adult rabbit ventricular cardiomyocytes. FKBP12.6 was over-expressed by ~6 times using a recombinant adenovirus coding for human FKBP12.6. This over-expression caused prolongation of action potential duration (APD) by ~30%. The amplitude of the transient outward current (Ito) was unchanged, but rate of inactivation at potentials positive to +40 mV was increased. FKBP12.6 over-expression decreased the amplitude of the inward rectifier current (IK1) by ~25% in the voltage range −70 to −30 mV, an effect prevented by FK506 or lowering intracellular [Ca2+] below 1 nM. Over-expression of an FKBP12.6 mutant, which cannot bind calcineurin, prolonged APD and affected Ito and IK1 in a similar manner to wild-type protein. These data suggest that FKBP12.6 can modulate APD via changes in IK1 independently of calcineurin binding, suggesting that FKBP12.6 may affect APD by direct interaction with IK1

    K201 improves aspects of the contractile performance of human failing myocardium via reduction in Ca2+ leak from the sarcoplasmic reticulum

    Get PDF
    In heart failure, intracellular Ca2+ leak from cardiac ryanodine receptors (RyR2s) leads to a loss of Ca2+ from the sarcoplasmic reticulum (SR) potentially contributing to decreased function. Experimental data suggest that the 1,4-benzothiazepine K201 (JTV-519) may stabilise RyR2s and thereby reduce detrimental intracellular Ca2+ leak. Whether K201 exerts beneficial effects in human failing myocardium is unknown. Therefore, we have studied the effects of K201 on muscle preparations from failing human hearts. K201 (0.3 μM; extracellular [Ca2+]e 1.25 mM) showed no effects on contractile function and micromolar concentrations resulted in negative inotropic effects (K201 1 μM; developed tension −9.8 ± 2.5% compared to control group; P < 0.05). Interestingly, K201 (0.3 μM) increased the post-rest potentiation (PRP) of failing myocardium after 120 s, indicating an increased SR Ca2+ load. At high [Ca2+]e concentrations (5 mmol/L), K201 increased PRP already at shorter rest intervals (30 s). Strikingly, treatment with K201 (0.3 μM) prevented diastolic dysfunction (diastolic tension at 5 mmol/L [Ca2+]e normalised to 1 mmol/L [Ca2+]e: control 1.26 ± 0.06, K201 1.01 ± 0.03, P < 0.01). In addition at high [Ca2+]e, K201 (0.3 μM) treatment significantly improved systolic function [developed tension +27 ± 8% (K201 vs. control); P < 0.05]. The beneficial effects on diastolic and systolic functions occurred throughout the physiological frequency range of the human heart rate from 1 to 3 Hz. Upon elevated intracellular Ca2+ concentration, systolic and diastolic contractile functions of terminally failing human myocardium are improved by K201

    Promoter methylation of Wnt5a is associated with microsatellite instability and BRAF V600E mutation in two large populations of colorectal cancer patients

    Get PDF
    BACKGROUND: In colorectal cancer (CRC), tumour microsatellite instability (MSI) status and CpG island methylator phenotype (CIMP) status are indicators of patient outcome, but the molecular events that give rise to these outcomes remain largely unknown. Wnt5a is a critical regulator of non-canonical Wnt activity and promoter hypermethylation of this gene has emerging prognostic roles in CRC; however the frequency and prognostic significance of this epigenetic event have not been explored in the context of colorectal tumour subtype. Consequently, we investigated the frequency and prognostic significance of Wnt5a methylation in a large cohort of MSI-stratified CRCs. METHODS: Methylation was quantified in a large cohort of 1232 colorectal carcinomas from two clinically distinct populations from Canada. Associations were examined between methylation status and clinicopathlogical features, including tumour MSI status, BRAF V600E mutation, and patient survival. RESULTS: In Ontario, Wnt5a methylation was strongly associated with MSI tumours after adjustment for age, sex, and tumour location (odds ratio (OR)=4.2, 95% confidence interval (CI)=2.4-7.4, P<10(-6)) and with BRAF V600E mutation, a marker of CIMP (OR=12.3, 95% CI=6.9-21.7, P<10(-17)), but was not associated with patient survival. Concordant results were obtained in Newfoundland. CONCLUSION: Methylation of Wnt5a is associated with distinct tumour subtypes, strengthening the evidence of an epigenetic-mediated Wnt bias in CRC

    FKBP12 Activates the Cardiac Ryanodine Receptor Ca2+-Release Channel and Is Antagonised by FKBP12.6

    Get PDF
    Changes in FKBP12.6 binding to cardiac ryanodine receptors (RyR2) are implicated in mediating disturbances in Ca2+-homeostasis in heart failure but there is controversy over the functional effects of FKBP12.6 on RyR2 channel gating. We have therefore investigated the effects of FKBP12.6 and another structurally similar molecule, FKBP12, which is far more abundant in heart, on the gating of single sheep RyR2 channels incorporated into planar phospholipid bilayers and on spontaneous waves of Ca2+-induced Ca2+-release in rat isolated permeabilised cardiac cells. We demonstrate that FKBP12 is a high affinity activator of RyR2, sensitising the channel to cytosolic Ca2+, whereas FKBP12.6 has very low efficacy, but can antagonise the effects of FKBP12. Mathematical modelling of the data shows the importance of the relative concentrations of FKBP12 and FKBP12.6 in determining RyR2 activity. Consistent with the single-channel results, physiological concentrations of FKBP12 (3 µM) increased Ca2+-wave frequency and decreased the SR Ca2+-content in cardiac cells. FKBP12.6, itself, had no effect on wave frequency but antagonised the effects of FKBP12

    The relationships between exogenous and endogenous antioxidants with the lipid profile and oxidative damage in hemodialysis patients

    Get PDF
    Background: We sought to investigate the relationships among the plasma levels of carotenoids, tocopherols, endogenous antioxidants, oxidative damage and lipid profiles and their possible effects on the cardiovascular risk associated with hemodialysis (HD) patients. Methods: The study groups were divided into HD and healthy subjects. Plasma carotenoid, tocopherol and malondialdehyde (MDA) levels, as well as erythrocyte reduced glutathione (GSH), were measured by HPLC. Blood antioxidant enzymes, kidney function biomarkers and the lipid profiles were analyzed by spectrophotometric methods. Results: Plasma lycopene levels and blood glutathione peroxidase (GPx) activity were significantly decreased in HD patients compared with healthy subjects. Total cholesterol, low-density lipoprotein cholesterol (LDL-c), creatinine, urea, MDA, GSH, superoxide dismutase (SOD) and catalase (CAT) were significantly increased in HD (p < 0.05). Lycopene levels were correlated with MDA (r = -0.50; p < 0.01), LDL-c (r = -0.38; p = 0.01) levels, the LDL-c/HDL-c index (r = -0.33; p = 0.03) and GPx activity (r = 0.30; p = 0.03). Regression models showed that lycopene levels were correlated with LDL-c (β estimated = -31.59; p = 0.04), while gender was correlated with the TC/HDL-c index and triglycerides. Age did not present a correlation with the parameters evaluated. GPx activity was negatively correlated with MDA levels and with the LDL-c/HDL-c and CT/HDL-c indexes. Conclusions: Lycopene may represent an additional factor that contributes to reduced lipid peroxidation and atherogenesis in hemodialysis patients

    Corporate governance for sustainability : Statement

    Get PDF
    The current model of corporate governance needs reform. There is mounting evidence that the practices of shareholder primacy drive company directors and executives to adopt the same short time horizon as financial markets. Pressure to meet the demands of the financial markets drives stock buybacks, excessive dividends and a failure to invest in productive capabilities. The result is a ‘tragedy of the horizon’, with corporations and their shareholders failing to consider environmental, social or even their own, long-term, economic sustainability. With less than a decade left to address the threat of climate change, and with consensus emerging that businesses need to be held accountable for their contribution, it is time to act and reform corporate governance in the EU. The statement puts forward specific recommendations to clarify the obligations of company boards and directors and make corporate governance practice significantly more sustainable and focused on the long term
    corecore