112 research outputs found

    When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data.</p> <p>Results</p> <p>Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This <it>in silico </it>model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 <it>diabetes mellitus</it>.</p> <p>Conclusions</p> <p>The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases.</p

    Perturbation de la voie de signalisation du TGF-b par les protéines du virus de l'hépatite C , impact sur la carcinogenÚse

    Get PDF
    L infection chronique par le virus de l hépatite C (VHC) conduit au développement de pathologies hépatiques, telles que la fibrose dont le terme évolutif est la cirrhose sur laquelle peut se développer un carcinome hépatocellulaire. Les observations cliniques indiquent que le VHC interfÚre avec la voie de signalisation du Transforming Growth Factor b (TGFb). Entre autres fonctions, cette cytokine induit la transition épithélio-mésenchymateuse (EMT), ce qui favorise la migration cellulaire et l'invasion tumorale. Le but de cette thÚse est d'analyser l'impact des protéines non structurales du VHC sur la voie de signalisation du TGFb.Nous avons montré que le réplicon subgénomique du VHC induit une augmentation de la signalisation du TGFb résultant en une plus forte expression de gÚnes associés à l EMT et induisant un phénotype d EMT. L expression de la protéase virale NS3-4A seule, augmente et prolonge la phosphorylation de Smad2/3 en aval du récepteur du TGFb et renforce l expression de certains gÚnes cibles du TGFb. L analyse des interactions entre les protéines du VHC et les protéines de la voie du TGFb a permis d identifier l interaction entre NS3-4A et la protéine Smurf2. Le réplicon subgénomique ou la protéase NS3-4A ont des rÎles antagonistes à la protéine Smurf2 sur la voie de signalisation du TGFb. L analyse globale des gÚnes régulés par le TGFb dans les cellules exprimant le réplicon subgénomique a permis d identifier, que dans ces cellules, le TGFb induit une réponse pro-tumorale.Ces résultats montrent que NS3-4A induit une plus forte réponse des cellules au TGFb, en inhibant la fonction de Smurf2 dans le rétrocontrÎle négatif de la voie du TGFb. Ce nouveau mécanisme d interférence du VHC avec la voie du TGFb pourrait contribuer à l EMT des cellules hépatocytaires infectées favorisant ainsi la cancérisation. Ce travail apporte de nouvelles pistes dans la compréhension des mécanismes associés à la cancérisation chez les patients chroniquement infectés par le VHC.Chronic infection by hepatitis C virus (HCV) leads to the development of hepatic diseases like fibrosis which evolves into cirrhosis on which can develop hepatocellular carcinoma. Clinical observations indicate that HCV interferes with the TGFb signaling pathway. Among other functions this cytokine induces epithelial-to-mesenchymal transition (EMT) promoting cell migration and tumor invasion. The aim of this study is to analyze the impact of HCV non structural proteins on TGFb signaling pathway. We have demonstrated that the HCV subgenomic replicon induces an enhancement of the TGFb signaling pathway resulting in a strong expression of EMT associated genes and inducing EMT phenotype. The expression of the NS3-4A viral protein alone enhances and stabilizes Smad2/3 phosphorylation downstream TGFb receptor and increases the expression of some TGFb target genes. The analysis of interactions between HCV proteins and proteins of the TGFb signaling pathway has shown the interaction of NS3-4A with Smurf2 protein. HCV subgenomic replicon and NS3-4A have antagonistic roles to Smurf2 on TGFb signaling pathway. The global analysis of genes regulated by TGFb in cells expressing HCV subgenomic replicon indicates that in these cells TGFb induces a pro-tumor answer.These results show that NS3-4A enhances TGFb answer by inhibiting Smurf2 functions in the negative feedback loop of the TGFb pathway. This new mechanism of HCV interference with the TGFb pathway can contribute to EMT in infected hepatocytes thus promoting carcinogenesis. This work provides new leads to understand the mechanisms associated to carcinogenesis in HCV chronically infected patients.LYON-ENS Sciences (693872304) / SudocSudocFranceF

    Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle

    Get PDF
    The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a sequence-specific DNA binding protein which plays an essential role in viral episome replication and segregation, by recruiting the cellular complex of DNA replication onto the origin (oriP) and by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication are well documented, those involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here, we have identified Regulator of Chromosome Condensation 1 (RCC1) as a novel cellular partner for EBNA1. RCC1 is the major nuclear guanine nucleotide exchange factor (RanGEF) for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation, and nuclear envelope reassembly following mitosis. Using several approaches, we have demonstrated a direct interaction between these two proteins and found that the EBNA1 domains responsible for EBNA1 tethering to the mitotic chromosomes are also involved in the interaction with RCC1. The use of an EBNA1 peptide array confirmed the interaction of RCC1 with these regions and also the importance of the N-terminal region of RCC1 in this interaction. Finally, using confocal microscopy and FRET analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase, suggesting an essential role for the interaction during this phase, perhaps in tethering EBNA1 to mitotic chromosomes

    pISTil: a pipeline for yeast two-hybrid Interaction Sequence Tags identification and analysis

    Get PDF
    High-throughput screening of protein-protein interactions opens new systems biology perspectives for the comprehensive understanding of cell physiology in normal and pathological conditions. In this context, yeast two-hybrid system appears as a promising approach to efficiently reconstruct protein interaction networks at the proteome-wide scale. This protein interaction screening method generates a large amount of raw sequence data, i.e. the ISTs (Interaction Sequence Tags), which urgently need appropriate tools for their systematic and standardised analysis.Journal Articleinfo:eu-repo/semantics/publishe

    Flavivirus NS3 and NS5 proteins interaction network: a high-throughput yeast two-hybrid screen

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genus <it>Flavivirus </it>encompasses more than 50 distinct species of arthropod-borne viruses, including several major human pathogens, such as West Nile virus, yellow fever virus, Japanese encephalitis virus and the four serotypes of dengue viruses (DENV type 1-4). Each year, flaviviruses cause more than 100 million infections worldwide, some of which lead to life-threatening conditions such as encephalitis or haemorrhagic fever. Among the viral proteins, NS3 and NS5 proteins constitute the major enzymatic components of the viral replication complex and are essential to the flavivirus life cycle.</p> <p>Results</p> <p>We report here the results of a high-throughput yeast two-hybrid screen to identify the interactions between human host proteins and the flavivirus NS3 and NS5 proteins. Using our screen results and literature curation, we performed a global analysis of the NS3 and NS5 cellular targets based on functional annotation with the Gene Ontology features. We finally created the first flavivirus NS3 and NS5 proteins interaction network and analysed the topological features of this network. Our proteome mapping screen identified 108 human proteins interacting with NS3 or NS5 proteins or both. The global analysis of the cellular targets revealed the enrichment of host proteins involved in RNA binding, transcription regulation, vesicular transport or innate immune response regulation.</p> <p>Conclusions</p> <p>We proposed that the selective disruption of these newly identified host/virus interactions could represent a novel and attractive therapeutic strategy in treating flavivirus infections. Our virus-host interaction map provides a basis to unravel fundamental processes about flavivirus subversion of the host replication machinery and/or immune defence strategy.</p

    High expression of antioxidant proteins in dendritic cells: possible implications in atherosclerosis

    Get PDF
    Dendritic cells (DCs) display the unique ability to activate naive T cells and to initiate primary T cell responses revealed in DC-T cell alloreactions. DCs frequently operate under stress conditions. Oxidative stress enhances the production of inflammatory cytokines by DCs. We performed a proteomic analysis to see which major changes occur, at the protein expression level, during DC differentiation and maturation. Comparative two-dimensional gel analysis of the monocyte, immature DC, and mature DC stages was performed. Manganese superoxide dismutase (Mn-SOD) reached 0.7% of the gel-displayed proteins at the mature DC stage. This important amount of Mn-SOD is a primary antioxidant defense system against superoxide radicals, but its product, H(2)O(2), is also deleterious for cells. Peroxiredoxin (Prx) enzymes play an important role in eliminating such peroxide. Prx1 expression level continuously increased during DC differentiation and maturation, whereas Prx6 continuously decreased, and Prx2 peaked at the immature DC stage. As a consequence, DCs were more resistant than monocytes to apoptosis induced by high amounts of oxidized low density lipoproteins containing toxic organic peroxides and hydrogen peroxide. Furthermore DC-stimulated T cells produced high levels of receptor activator of nuclear factor kappaB ligand, a chemotactic and survival factor for monocytes and DCs. This study provides insights into the original ability of DCs to express very high levels of antioxidant enzymes such as Mn-SOD and Prx1, to detoxify oxidized low density lipoproteins, and to induce high levels of receptor activator of nuclear factor kappaB ligand by the T cells they activate and further emphasizes the role that DCs might play in atherosclerosis, a pathology recognized as a chronic inflammatory disorder.Comment: cpyright: American Society of Biochemistry and Molecular Biolog

    VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks

    Get PDF
    Infectious diseases caused by viral agents kill millions of people every year. The improvement of prevention and treatment of viral infections and their associated diseases remains one of the main public health challenges. Towards this goal, deciphering virus–host molecular interactions opens new perspectives to understand the biology of infection and for the design of new antiviral strategies. Indeed, modelling of an infection network between viral and cellular proteins will provide a conceptual and analytic framework to efficiently formulate new biological hypothesis at the proteome scale and to rationalize drug discovery. Therefore, we present the first release of VirHostNet (Virus–Host Network), a public knowledge base specialized in the management and analysis of integrated virus–virus, virus–host and host–host interaction networks coupled to their functional annotations. VirHostNet integrates an extensive and original literature-curated dataset of virus–virus and virus–host interactions (2671 non-redundant interactions) representing more than 180 distinct viral species and one of the largest human interactome (10 672 proteins and 68 252 non-redundant interactions) reconstructed from publicly available data. The VirHostNet Web interface provides appropriate tools that allow efficient query and visualization of this infected cellular network. Public access to the VirHostNet knowledge-based system is available at http://pbildb1.univ-lyon1.fr/virhostnet

    PhEVER: a database for the global exploration of virus–host evolutionary relationships

    Get PDF
    Fast viral adaptation and the implication of this rapid evolution in the emergence of several new infectious diseases have turned this issue into a major challenge for various research domains. Indeed, viruses are involved in the development of a wide range of pathologies and understanding how viruses and host cells interact in the context of adaptation remains an open question. In order to provide insights into the complex interactions between viruses and their host organisms and namely in the acquisition of novel functions through exchanges of genetic material, we developed the PhEVER database. This database aims at providing accurate evolutionary and phylogenetic information to analyse the nature of virus–virus and virus–host lateral gene transfers. PhEVER (http://pbil.univ-lyon1.fr/databases/phever) is a unique database of homologous families both (i) between sequences from different viruses and (ii) between viral sequences and sequences from cellular organisms. PhEVER integrates extensive data from up-to-date completely sequenced genomes (2426 non-redundant viral genomes, 1007 non-redundant prokaryotic genomes, 43 eukaryotic genomes ranging from plants to vertebrates) and offers a clustering of proteins into homologous families containing at least one viral sequences, as well as alignments and phylogenies for each of these families. Public access to PhEVER is available through its webpage and through all dedicated ACNUC retrieval systems

    IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network

    Get PDF
    Autophagy is a conserved degradative pathway used as a host defense mechanism against intracellular pathogens. However, several viruses can evade or subvert autophagy to insure their own replication. Nevertheless, the molecular details of viral interaction with autophagy remain largely unknown. We have determined the ability of 83 proteins of several families of RNA viruses (Paramyxoviridae, Flaviviridae, Orthomyxoviridae, Retroviridae and Togaviridae), to interact with 44 human autophagy-associated proteins using yeast two-hybrid and bioinformatic analysis. We found that the autophagy network is highly targeted by RNA viruses. Although central to autophagy, targeted proteins have also a high number of connections with proteins of other cellular functions. Interestingly, immunity-associated GTPase family M (IRGM), the most targeted protein, was found to interact with the autophagy-associated proteins ATG5, ATG10, MAP1CL3C and SH3GLB1. Strikingly, reduction of IRGM expression using small interfering RNA impairs both Measles virus (MeV), Hepatitis C virus (HCV) and human immunodeficiency virus-1 (HIV-1)-induced autophagy and viral particle production. Moreover we found that the expression of IRGM-interacting MeV-C, HCV-NS3 or HIV-NEF proteins per se is sufficient to induce autophagy, through an IRGM dependent pathway. Our work reveals an unexpected role of IRGM in virus-induced autophagy and suggests that several different families of RNA viruses may use common strategies to manipulate autophagy to improve viral infectivity
    • 

    corecore