20 research outputs found
Compressed Sensing Using Binary Matrices of Nearly Optimal Dimensions
In this paper, we study the problem of compressed sensing using binary
measurement matrices and -norm minimization (basis pursuit) as the
recovery algorithm. We derive new upper and lower bounds on the number of
measurements to achieve robust sparse recovery with binary matrices. We
establish sufficient conditions for a column-regular binary matrix to satisfy
the robust null space property (RNSP) and show that the associated sufficient
conditions % sparsity bounds for robust sparse recovery obtained using the RNSP
are better by a factor of compared to the
sufficient conditions obtained using the restricted isometry property (RIP).
Next we derive universal \textit{lower} bounds on the number of measurements
that any binary matrix needs to have in order to satisfy the weaker sufficient
condition based on the RNSP and show that bipartite graphs of girth six are
optimal. Then we display two classes of binary matrices, namely parity check
matrices of array codes and Euler squares, which have girth six and are nearly
optimal in the sense of almost satisfying the lower bound. In principle,
randomly generated Gaussian measurement matrices are "order-optimal". So we
compare the phase transition behavior of the basis pursuit formulation using
binary array codes and Gaussian matrices and show that (i) there is essentially
no difference between the phase transition boundaries in the two cases and (ii)
the CPU time of basis pursuit with binary matrices is hundreds of times faster
than with Gaussian matrices and the storage requirements are less. Therefore it
is suggested that binary matrices are a viable alternative to Gaussian matrices
for compressed sensing using basis pursuit. \end{abstract}Comment: 28 pages, 3 figures, 5 table
The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019
Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
Microfabrication and Electrochemical Characterization of a Novel SU-8 Probe with an Array of Individually Addressable Electrodes Suitable for Redox Cycling Experiments in Ultra-small Volumes
Redox cycling is an electrochemical technique that utilizes closely spaced generator and collector electrodes to cycle reversible redox species between their oxidative states. With advantages in signal amplification, selectivity of species based on their electrochemical reaction mechanism, and limited or no background subtraction, this technique is well suited for selective detection of important electrochemically active molecules such as dopamine at basal or slowly changing levels.
Miniaturized medical devices have become an area of great interest for measurement of chemicals in limited volumes with low concentrations or in sensitive tissues. A probe on a polymeric SU-8 substrate with suitable dimensions and robustness for in vivo neural measurements was developed and tested in vitro. The probe’s unique construction using microfabrication processes and a laser-machining procedure is described in detail. The probe features an array of individually addressable electrodes, each 100 μm long, 4 μm wide and with a 100 μm gap in between, on a shank that is 6 mm long and 100 μm wide. The probe is insulated by a thin layer of SU-8 with only the electrodes near the tip and the contact pads exposed. Evaluation of tissue after probe insertion into a rat brain indicates minimal damage comparable to FSCV electrodes and less extensive than the microdialysis probe.
The electrodes on the probe were characterized electrochemically and redox cycling on the array was evaluated in vitro in the presence of model compounds (potassium ferricyanide and ruthenium (III) hexamine chloride) and dopamine, and the responses were compared to theory. The amplification factors, percent collection efficiencies and detection limits are determined from calibration curves. The best detection limits obtained for dopamine at the generator electrodes and collector electrodes during redox cycling are 800 nM and 1.10 μM, respectively. These values lie in the physiological concentration range of dopamine. The features and the results suggest that the probe is ready for further analysis in vivo.
Finally, potential future designs for the probe are proposed and their expected current is calculated using theoretical approximations. All of the proposed designs fit on the same footprint as the current probe (70-μm wide and 100-μm long window) and have dimensions achievable with available micro and nanofabrication tools
Array LDPC Code-based Compressive Sensing
In this paper, we focus on the problem of compressive sensing using binary measurement matrices, and basis pursuit as the recovery algorithm. We obtain new lower bounds on the number of samples to achieve robust sparse recovery using binary matrices and derive sufficient conditions for a binary matrix with fixed column-weight to satisfy the robust null space property. Next we prove that any column-regular binary matrix with girth 6 has nearly optimal number of measurements. Then we show that the parity check matrices of array LDPC codes are nearly optimal in the sense of having girth six and almost satisfying the lower bound on the number of samples. Array code parity check matrices demonstrate an example of binary matrices that achieve guaranteed recovery via robust null-space property and in practice for n \leq 10^{6} provide faster recovery compared to the Gaussian counterpart. This is an extended abstract without proofs. The full paper with additional details can be found in [1]
Acoustic vitality evaluation in urban public spaces:(Case study: Darvazeh Isfahan, Shiraz, Iran)
Aims: This study establishes a contextual qualitative and quantitative evaluation of acoustic vitality in a public urban space (Darvazeh Isfahan) in Shiraz.Methods: In quantitative part, by using acoustic simulation software (Ease4.3), measurable characteristics of sound including Sound Pressure Level (SPL), Sound Clarity (C), and Sound Transmission Index (STI) were examined. In the qualitative part, by conducting a sound-walk questionnaire, 30 space-users were interviewed at different periods of a working day. Simultaneously, we used a calibrated voice recorder and mapped the overall perceived-sound pressure of urban space.Findings: The results showed instability in SPL at high ranges. It means that the fibre absorbers or street wall materials had acted insufficiently. The analysis also revealed a relatively normal Sound Transmission Index. However, the sound clarity in 50 milliseconds and 80 milliseconds were higher than average. On the qualitative evaluation part, the main sound contents that affected the sound clarity varied during the day. In the morning, users frequently perceived the carriage, motorcycle and human activity noises. Through noon, added to the morning sound content, they mentioned music sound. Finally, during the late evening, motorcycle and vehicle's noise, human's whispering and music were the most heard contents.Conclusion: By overlaying the quantitative and qualitative maps, we introduced the specific boundaries of the urban space that acoustically require urban design interventions. Despite the fact that the results might be restricted to a local context in Shiraz, the findings could impart fruitful information for implicating appropriate acoustic vitality guidelines in urban public spaces
Acoustic vitality evaluation in urban public spaces:(Case study: Darvazeh Isfahan, Shiraz, Iran)
Aims: This study establishes a contextual qualitative and quantitative evaluation of acoustic vitality in a public urban space (Darvazeh Isfahan) in Shiraz.Methods: In quantitative part, by using acoustic simulation software (Ease4.3), measurable characteristics of sound including Sound Pressure Level (SPL), Sound Clarity (C), and Sound Transmission Index (STI) were examined. In the qualitative part, by conducting a sound-walk questionnaire, 30 space-users were interviewed at different periods of a working day. Simultaneously, we used a calibrated voice recorder and mapped the overall perceived-sound pressure of urban space.Findings: The results showed instability in SPL at high ranges. It means that the fibre absorbers or street wall materials had acted insufficiently. The analysis also revealed a relatively normal Sound Transmission Index. However, the sound clarity in 50 milliseconds and 80 milliseconds were higher than average. On the qualitative evaluation part, the main sound contents that affected the sound clarity varied during the day. In the morning, users frequently perceived the carriage, motorcycle and human activity noises. Through noon, added to the morning sound content, they mentioned music sound. Finally, during the late evening, motorcycle and vehicle's noise, human's whispering and music were the most heard contents.Conclusion: By overlaying the quantitative and qualitative maps, we introduced the specific boundaries of the urban space that acoustically require urban design interventions. Despite the fact that the results might be restricted to a local context in Shiraz, the findings could impart fruitful information for implicating appropriate acoustic vitality guidelines in urban public spaces