191 research outputs found

    Recapitulating Complex Human Tissues using organ-on-chip and organoid Technologies

    Get PDF
    Please click Download on the upper right corner to see the full descriptio

    Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces.

    Get PDF
    Although adhesive interactions between cells and nanostructured interfaces have been studied extensively, there is a paucity of data on how nanostructured interfaces repel cells by directing cell migration and cell-colony organization. Here, by using multiphoton ablation lithography to pattern surfaces with nanoscale craters of various aspect ratios and pitches, we show that the surfaces altered the cells focal-adhesion size and distribution, thus affecting cell morphology, migration and ultimately localization. We also show that nanocrater pitch can disrupt the formation of mature focal adhesions to favour the migration of cells towards higher-pitched regions, which present increased planar area for the formation of stable focal adhesions. Moreover, by designing surfaces with variable pitch but constant nanocrater dimensions, we were able to create circular and striped cellular patterns. Our surface-patterning approach, which does not involve chemical treatments and can be applied to various materials, represents a simple method to control cell behaviour on surfaces

    Unraveling the impact of subsurface and surface properties of a material on biological adhesion - a multi-scale approach

    Get PDF
    Understanding the adhesion of biological objects to inorganic surfaces is an important research objective in physics and the life sciences. To characterize biological adhesion, most studies describe a substrate solely by its surface properties; the composition of the material beneath the surface is frequently overlooked. That way, long-range van der Waals (vdW) interactions are disregarded. This work reveals that biological objects of all scales—nanoscopic proteins, microscopic bacteria, and macroscopic geckos—are influenced by nanoscale differences in the interface potential. By using tailored silicon wafers with a variable silicon oxide layer thickness, the vdW part of the interface potential is tuned independently from the surface properties. By modifying the wafers with silane monolayers, the surface chemistry can be varied separately as well. On these model substrates, adsorption and adhesion experiments were performed. Protein adsorption was investigated by in situ X-ray reflectometry, bacterial adhesion was explored via AFM force spectroscopy with bacterial probes, and gecko adhesion was characterized using a mechanical testing platform. Moreover, this work investigates whether or not bacterial adhesion is influenced by changes in surface properties such as the fluoridation of artificial teeth or contact-induced rearrangements in the bacterial cell wall and whether or not a reduction of the peptidoglycan crosslinking affects the elasticity of the bacterial cell wall.Das Verständnis der Adhäsion biologischer Objekte an anorganischen Materialien ist ein wichtiges Forschungsziel in der Physik und den Lebenswissenschaften. Um biologische Adhäsion zu beschreiben, berücksichtigen viele Studien lediglich die Eigenschaften der Oberfläche; die Materialzusammensetzung unterhalb der Oberfläche wird häufig übersehen. Langreichweitige Van der Waals (VdW)-Kräfte werden somit vernachlässigt. Die vorliegende Arbeit zeigt, dass Unterschiede im Grenzflächenpotential einen Einfluss auf biologische Objekte (Proteine, Bakterien, Geckos) haben. Mithilfe von Siliziumwafern mit unterschiedlich dicken Oxidschichten wird der VdW-Anteil des Grenzflächenpotentials unabhängig von den Oberflächeneigenschaften variiert. Durch Funktionalisierung der Wafer mit einer Silan-Monolage wird auch die Oberflächenchemie gesondert verändert. Auf diesen Modelloberflächen wurden Adhäsions- und Adsorptionsexperimente durchgeführt. Dabei wurde die Proteinadsorption mittels in situ Röntgenreflektometrie, die Bakterienadhäsion mittels AFM-Kraftspektroskopie mit Bakteriensonden und die Geckoadhäsion mittels einer mechanischen Testplattform charakterisiert. Zudem wurde in der vorliegenden Arbeit ermittelt, inwiefern Veränderungen der Oberfläche, wie die Fluorierung von künstlichen Zähnen oder Umordnungen in der bakteriellen Zellwand, die Bakterienadhäsion beeinflussen und inwiefern eine verringerte Quervernetzung der bakteriellen Zellwand deren Elastizität verändert

    Unraveling the impact of subsurface and surface properties of a material on biological adhesion - a multi-scale approach

    Get PDF
    Understanding the adhesion of biological objects to inorganic surfaces is an important research objective in physics and the life sciences. To characterize biological adhesion, most studies describe a substrate solely by its surface properties; the composition of the material beneath the surface is frequently overlooked. That way, long-range van der Waals (vdW) interactions are disregarded. This work reveals that biological objects of all scales—nanoscopic proteins, microscopic bacteria, and macroscopic geckos—are influenced by nanoscale differences in the interface potential. By using tailored silicon wafers with a variable silicon oxide layer thickness, the vdW part of the interface potential is tuned independently from the surface properties. By modifying the wafers with silane monolayers, the surface chemistry can be varied separately as well. On these model substrates, adsorption and adhesion experiments were performed. Protein adsorption was investigated by in situ X-ray reflectometry, bacterial adhesion was explored via AFM force spectroscopy with bacterial probes, and gecko adhesion was characterized using a mechanical testing platform. Moreover, this work investigates whether or not bacterial adhesion is influenced by changes in surface properties such as the fluoridation of artificial teeth or contact-induced rearrangements in the bacterial cell wall and whether or not a reduction of the peptidoglycan crosslinking affects the elasticity of the bacterial cell wall.Das Verständnis der Adhäsion biologischer Objekte an anorganischen Materialien ist ein wichtiges Forschungsziel in der Physik und den Lebenswissenschaften. Um biologische Adhäsion zu beschreiben, berücksichtigen viele Studien lediglich die Eigenschaften der Oberfläche; die Materialzusammensetzung unterhalb der Oberfläche wird häufig übersehen. Langreichweitige Van der Waals (VdW)-Kräfte werden somit vernachlässigt. Die vorliegende Arbeit zeigt, dass Unterschiede im Grenzflächenpotential einen Einfluss auf biologische Objekte (Proteine, Bakterien, Geckos) haben. Mithilfe von Siliziumwafern mit unterschiedlich dicken Oxidschichten wird der VdW-Anteil des Grenzflächenpotentials unabhängig von den Oberflächeneigenschaften variiert. Durch Funktionalisierung der Wafer mit einer Silan-Monolage wird auch die Oberflächenchemie gesondert verändert. Auf diesen Modelloberflächen wurden Adhäsions- und Adsorptionsexperimente durchgeführt. Dabei wurde die Proteinadsorption mittels in situ Röntgenreflektometrie, die Bakterienadhäsion mittels AFM-Kraftspektroskopie mit Bakteriensonden und die Geckoadhäsion mittels einer mechanischen Testplattform charakterisiert. Zudem wurde in der vorliegenden Arbeit ermittelt, inwiefern Veränderungen der Oberfläche, wie die Fluorierung von künstlichen Zähnen oder Umordnungen in der bakteriellen Zellwand, die Bakterienadhäsion beeinflussen und inwiefern eine verringerte Quervernetzung der bakteriellen Zellwand deren Elastizität verändert

    The Inflammatory Profile of Obesity and the Role on Pulmonary Bacterial and Viral Infections

    Get PDF
    Obesity is a globally increasing health problem, entailing diverse comorbidities such as infectious diseases. An obese weight status has marked effects on lung function that can be attributed to mechanical dysfunctions. Moreover, the alterations of adipocyte-derived signal mediators strongly influence the regulation of inflammation, resulting in chronic low-grade inflammation. Our review summarizes the known effects regarding pulmonary bacterial and viral infections. For this, we discuss model systems that allow mechanistic investigation of the interplay between obesity and lung infections. Overall, obesity gives rise to a higher susceptibility to infectious pathogens, but the pathogenetic process is not clearly defined. Whereas, viral infections often show a more severe course in obese patients, the same patients seem to have a survival benefit during bacterial infections. In particular, we summarize the main mechanical impairments in the pulmonary tract caused by obesity. Moreover, we outline the main secretory changes within the expanded adipose tissue mass, resulting in chronic low-grade inflammation. Finally, we connect these altered host factors to the influence of obesity on the development of lung infection by summarizing observations from clinical and experimental data

    A detailed guideline for the fabrication of single bacterial probes used for atomic force spectroscopy

    Get PDF
    The atomic force microscope (AFM) evolved as a standard device in modern microbiological research. However, its capability as a sophisticated force sensor is not used to its full capacity. The AFM turns into a unique tool for quantitative adhesion research in bacteriology by using “bacterial probes”. Thereby, bacterial probes are AFM cantilevers that provide a single bacterium or a cluster of bacteria as the contact-forming object. We present a step-by-step protocol for preparing bacterial probes, performing force spectroscopy experiments and processing force spectroscopy data. Additionally, we provide a general insight into the field of bacterial cell force spectroscopy

    Voices

    Get PDF
    Microfabricated and microfluidic devices enable standardized handling, precise spatiotemporal manipulation of cells and liquids, and recapitulation of cellular environments, tissues, and organ-level biology. We asked researchers how these devices can make in vitro experiments more physiologically relevant.Dissecting Biological Complexity / Lydia L. Sohn Improve Reproducibility! / Petra Schwille Enabling Physiological Conditions / Andreas Hierlemann Controlling Space and Time Organs-on-Chips Multicellular Microfluidics Beyond Just Shear Force

    Stochastic binding of Staphylococcus aureus to hydrophobic surfaces

    Get PDF
    The adhesion of pathogenic bacteria to surfaces is of immense importance for health care applications. Via a combined experimental and computational approach, we studied the initiation of contact in the adhesion process of the pathogenic bacterium Staphylococcus aureus. AFM force spectroscopy with single cell bacterial probes paired with Monte Carlo simulations enabled an unprecedented molecular investigation of the contact formation. Our results reveal that bacteria attach to a surface over distances far beyond the range of classical surface forces via stochastic binding of thermally fluctuating cell wall proteins. Thereby, the bacteria are pulled into close contact with the surface as consecutive proteins of different stiffnesses attach. This mechanism greatly enhances the attachment capability of S. aureus. It, however, can be manipulated by enzymatically/chemically modifying the cell wall proteins to block their consecutive binding. Our study furthermore reveals that fluctuations in protein density and structure are much more relevant than the exact form of the binding potential

    Strategien zur Regulation der Schwarzfäule (Guignardia bidwellii) im ökologischen Weinbau

    Get PDF
    Die Schwarzfäule tritt in einigen deutschen Weinbaugebieten flächendeckend auf und kann gravierende Ertragsausfälle verursachen. Um die Produktionssicherheit im ökologischen Weinbau zu gewährleisten, wurde ein Kooperationsprojekt mit der Zielsetzung initiiert, Informationen über die Biologie des Schadpilzes zu erarbeiten und Strategien zur Prävention und Bekämpfung der Krankheit unter den spezifischen Bedingungen des ökologischen Weinbaus zu entwickeln. Die Biologie des Schaderregers und seiner Interaktionen mit der Rebe wurde in Hinblick auf die Fruchtkörperentwicklung, die Sporenbildung und den Infektionsprozess eingehend untersucht und in Beziehung zu Witterungsbedingungen und Bewirtschaftungsparametern gesetzt. Die Ergebnisse bilden eine Grundlage für die Einschätzung des Infektionsrisikos und die Entwicklung von Entscheidungshilfen für den Rebschutz. Traditionelle und „pilzwiderstandsfähige“ Rebsorten wurden hinsichtlich ihrer Anfälligkeit für die Schwarzfäule charakterisiert, wodurch den Winzern Informationen für die Auswahl weniger Anfälliger Sorten zum Anbau in Befallsgebieten zur Verfügung stehen. Befallenes Rebholz und befallene Ranken wurden als bedeutende Quellen des Primärinokulums der Schwarzfäule identifiziert. Das Entfernen befallener Blätter bei Laubarbeiten erwies sich als Möglichkeit, das Infektionsrisiko für die Trauben zu reduzieren. Aus einer Vielzahl von Mikroorganismen, Pflanzenextrakten, Pflanzenschutz- und –stärkungsmitteln wurden wirksame Agenzien selektiert und im Freiland unter Praxisbedingungen geprüft. Die Kombination von Pflanzenschutzmitteln auf der Basis von Schwefel und Kupfer war besonders wirksam. Wurde, abhängig vom Entwicklungsstadium und dem Infektionsrisiko, das Kupfer mit Gesteinsmehl ersetzt, ließ sich der Kupferaufwand erheblich reduzieren. Im Gegensatz zu Gewächshausversuchen war die Wirkung saponinhaltiger Pflanzenextrakte im Freiland unzureichend. Bei entsprechender Formulierung zur Verbesserung der Regenfestigkeit könnte das große Potential dieser Pflanzenextrakte jedoch genutzt werden. Aufgrund der Ergebnisse des Forschungsprojekts stehen dem ökologischen Weinbau Informationen als Grundlage eines umfassenden Managementkonzepts für die Schwarzfäule zur Verfügung

    Is adhesion superficial? Silicon wafers as a model system to study van der Waals interactions

    Full text link
    Adhesion is a key issue for researchers of various fields, it is therefore of uppermost importance to understand the parameters that are involved. Commonly, only surface parameters are employed to determine the adhesive forces between materials. Yet, van der Waals forces act not only between atoms in the vicinity of the surface, but also between atoms in the bulk material. In this review, we describe the principles of van der Waals interactions and outline experimental and theoretical studies investigating the influence of the subsurface material on adhesion. In addition, we present a collection of data indicating that silicon wafers with native oxide layers are a good model substrate to study van der Waals interactions with coated materials
    • …
    corecore