274 research outputs found

    Single State Supermultiplet in 1+1 Dimensions

    Full text link
    We consider multiplet shortening for BPS solitons in N=1 two-dimensional models. Examples of the single-state multiplets were established previously in N=1 Landau-Ginzburg models. The shortening comes at a price of loosing the fermion parity (1)F(-1)^F due to boundary effects. This implies the disappearance of the boson-fermion classification resulting in abnormal statistics. We discuss an appropriate index that counts such short multiplets. A broad class of hybrid models which extend the Landau-Ginzburg models to include a nonflat metric on the target space is considered. Our index turns out to be related to the index of the Dirac operator on the soliton reduced moduli space (the moduli space is reduced by factoring out the translational modulus). The index vanishes in most cases implying the absence of shortening. In particular, it vanishes when there are only two critical points on the compact target space and the reduced moduli space has nonvanishing dimension. We also generalize the anomaly in the central charge to take into account the target space metric.Comment: LaTex, 42 pages, no figures. Contribution to the Michael Marinov Memorial Volume, ``Multiple facets of quantization and supersymmetry'' (eds. M.Olshanetsky and A. Vainshtein, to be publish by World Scientific). The paper is drastically revised compared to the first version. We add sections treating the following issues: (i) a new index counting one-state supermultiplets; (ii) analysis of hybrid models of general type; (iii) generalization of the anomaly in the central charge accounting for the target space metri

    Calculations of the Local Density of States for some Simple Systems

    Full text link
    A recently proposed convolution technique for the calculation of local density of states is described more thouroughly and new results of its application are presented. For separable systems the exposed method allows to construct the ldos for a higher dimensionality out of lower dimensional parts. Some practical and theoretical aspects of this approach are also discussed.Comment: 5 pages, 3 figure

    Rigidity percolation on aperiodic lattices

    Full text link
    We studied the rigidity percolation (RP) model for aperiodic (quasi-crystal) lattices. The RP thresholds (for bond dilution) were obtained for several aperiodic lattices via computer simulation using the "pebble game" algorithm. It was found that the (two rhombi) Penrose lattice is always floppy in view of the RP model. The same was found for the Ammann's octagonal tiling and the Socolar's dodecagonal tiling. In order to impose the percolation transition we used so c. "ferro" modification of these aperiodic tilings. We studied as well the "pinwheel" tiling which has "infinitely-fold" orientational symmetry. The obtained estimates for the modified Penrose, Ammann and Socolar lattices are respectively: pcP=0.836±0.002p_{cP} =0.836\pm 0.002, pcA=0.769±0.002p_{cA} = 0.769\pm0.002, pcS=0.938±0.001p_{cS} = 0.938\pm0.001. The bond RP threshold of the pinwheel tiling was estimated to pc=0.69±0.01p_c = 0.69\pm0.01. It was found that these results are very close to the Maxwell (the mean-field like) approximation for them.Comment: 9 LaTeX pages, 3 PostScript figures included via epsf.st

    Mirror symmetry in two steps: A-I-B

    Full text link
    We suggest an interpretation of mirror symmetry for toric varieties via an equivalence of two conformal field theories. The first theory is the twisted sigma model of a toric variety in the infinite volume limit (the A-model). The second theory is an intermediate model, which we call the I-model. The equivalence between the A-model and the I-model is achieved by realizing the former as a deformation of a linear sigma model with a complex torus as the target and then applying to it a version of the T-duality. On the other hand, the I-model is closely related to the twisted Landau-Ginzburg model (the B-model) that is mirror dual to the A-model. Thus, the mirror symmetry is realized in two steps, via the I-model. In particular, we obtain a natural interpretation of the superpotential of the Landau-Ginzburg model as the sum of terms corresponding to the components of a divisor in the toric variety. We also relate the cohomology of the supercharges of the I-model to the chiral de Rham complex and the quantum cohomology of the underlying toric variety.Comment: 50 pages; revised versio

    On Microscopic Origin of Integrability in Seiberg-Witten Theory

    Full text link
    We discuss microscopic origin of integrability in Seiberg-Witten theory, following mostly the results of hep-th/0612019, as well as present their certain extension and consider several explicit examples. In particular, we discuss in more detail the theory with the only switched on higher perturbation in the ultraviolet, where extra explicit formulas are obtained using bosonization and elliptic uniformization of the spectral curve.Comment: 24 pages, 1 figure, LaTeX, based on the talks at 'Geometry and Integrability in Mathematical Physics', Moscow, May 2006; 'Quarks-2006', Repino, May 2006; Twente conference on Lie groups, December 2006 and 'Classical and Quantum Integrable Models', Dubna, January 200

    Electron-Beam Driven Relaxation Oscillations in Ferroelectric Nanodisks

    Get PDF
    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate (PZT) nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems.Comment: 5 pages, 2 figure

    On Combinatorial Expansions of Conformal Blocks

    Full text link
    In a recent paper (arXiv:0906.3219) the representation of Nekrasov partition function in terms of nontrivial two-dimensional conformal field theory has been suggested. For non-vanishing value of the deformation parameter \epsilon=\epsilon_1+\epsilon_2 the instanton partition function is identified with a conformal block of Liouville theory with the central charge c = 1+ 6\epsilon^2/\epsilon_1\epsilon_2. If reversed, this observation means that the universal part of conformal blocks, which is the same for all two-dimensional conformal theories with non-degenerate Virasoro representations, possesses a non-trivial decomposition into sum over sets of the Young diagrams, different from the natural decomposition studied in conformal field theory. We provide some details about this intriguing new development in the simplest case of the four-point correlation functions.Comment: 22 page

    Spherical orbit closures in simple projective spaces and their normalizations

    Full text link
    Let G be a simply connected semisimple algebraic group over an algebraically closed field k of characteristic 0 and let V be a rational simple G-module of finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its closure, then we describe the orbits of X and those of its normalization. If moreover the wonderful completion of G/H is strict, then we give necessary and sufficient combinatorial conditions so that the normalization morphism is a homeomorphism. Such conditions are trivially fulfilled if G is simply laced or if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation Groups. Simplified some proofs and corrected minor mistakes, added references. v3: major changes due to a mistake in previous version

    Holomorphic Currents and Duality in N=1 Supersymmetric Theories

    Full text link
    Twisted supersymmetric theories on a product of two Riemann surfaces possess non-local holomorphic currents in a BRST cohomology. The holomorphic currents act as vector fields on the chiral ring. The OPE's of these currents are invariant under the renormalization group flow up to BRST-exact terms. In the context of electric-magnetic duality, the algebra generated by the holomorphic currents in the electric theory is isomorphic to the one on the magnetic side. For the currents corresponding to global symmetries this isomorphism follows from 't Hooft anomaly matching conditions. The isomorphism between OPE's of the currents corresponding to non-linear transformations of fields of matter imposes non-trivial conditions on the duality map of chiral ring. We consider in detail the SU(Nc)SU(N_c) SQCD with matter in fundamental and adjoint representations, and find agreement with the duality map proposed by Kutasov, Schwimmer and Seiberg.Comment: 19 pages, JHEP3 LaTex, typos correcte
    corecore