38 research outputs found

    Random networks of core-shell-like Cu-Cu2O/CuO nanowires as surface plasmon resonance-enhanced sensors

    Get PDF
    The rapid oxide formation on pristine unprotected copper surfaces limits the direct application of Cu nanomaterials in electronics and sensor assemblies with physical contacts. However, it is not clear whether the growing cuprous (Cu2O) and cupric oxides (CuO) and the formation of core-shell-like Cu-Cu2O/CuO nanowires would cause any compromise for non-contact optical measurements, where light absorption and subsequent charge oscillation and separation take place such as those in surface plasmon-assisted and photocatalytic processes, respectively. Therefore, we analyze how the surface potential of hydrothermally synthetized copper nanowires changes as a function of time in ambient conditions using Kelvin probe force microscopy in dark and under light illumination to reveal charge accumulation on the nanowires and on the supporting gold substrate. Further, we perform finite element modeling of the optical absorption to predict plasmonic behavior of the nanostructures. The results suggest that the core-shell-like Cu-Cu2O/CuO nanowires may be useful both in photocatalytic and in surface plasmon-enhanced processes. Here, by exploiting the latter, we show that regardless of the native surface oxide formation, random networks of the nanowires on gold substrates work as excellent amplification media for surface-enhanced Raman spectroscopy as demonstrated in sensing of Rhodamine 6G dye molecules

    Surface Physicochemical Properties At The Micro And Nano Length Scales: Role On Bacterial Adhesion And Xylella Fastidiosa Biofilm Development.

    Get PDF
    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.8e7524

    Novel polylactic acid (PLA)-based active packaging with incorporation of nanoparticles and its performance throughout shelf-life of fresh-cut fruit

    Get PDF
    This study aimed at developing innovative and environmentally friendly packages for fresh-cut fruits and at a better understanding their effect on physicochemical, mechanical and microbiological characteristics during shelf-life. Packages were developed under the scope of EU project SusFoFlex (7th framework programme) – thought to incorporate materials in final packaging formulations complying environmental and sustainability concerns and valorisation of agri-food by-products. Polylactic acid (PLA)-based active packaging formulations differed in nanoclays used and presence/absence of a surfactant. PLA-nanocomposite packaging performance was evaluated and compared with pristine-PLA and conventional polyethylene terephthalate (PET). Polyone was used as plasticizer in PLA packages. PET formulation did not include any nanoclay. Fresh-cut melon was selected as food model to assess PLA packaging formulations performance on quality changes taking place throughout 7-d storage under controlled conditions. Physicochemical and textural analysis over time encompassed weight loss, colour, visual appearance, pH, soluble solids and firmness, whereas microbial enumeration covered vegetative mesophilics and psychrotrofics, Gram- rods, nonsporing Gram+ rods and cocci, yeasts and moulds. Environmental impact of PLA-based packaging was evaluated via life cycle assessment (LCA) and compared with PET. Under limit storage conditions, all microbial groups exhibited maximum viable counts after 5-d. Pseudomonas aeruginosa and Escherichia coli were absent, and refrigeration proved to effectively reduce microbial activity. Overall inspection of dataset throughout storage, unfolded that nanoclays and surfactants in PLA formulations improved their performance, thus contributing to bring together the characteristics of both biopolymers (PLA and PET). Finally, LCA impact assessment indicated that PLA packaging with nanoclays had the highest environmental performance

    Aligned multi-walled carbon nanotube-embodied hydrogel via low magnetic field: A strategy for engineering aligned injectable scaffolds

    Get PDF
    Injectable scaffolds are a promising strategy to restore and regenerate damaged and diseased tissues. They require minimally invasive procedure and allow the formation of an in-situ structure of any shape. However, the formation of 3D in-situ structure with aligned morphologies using a method which could be easily transferred to clinical settings remains a challenge. Herein, the rational design of an aligned injectable hydrogel-based scaffold via remote-induced alignment is reported. Carboxylated multi-walled carbon nanotubes (cMWCNT) are aligned into hydrogel via low magnetic field. The uniform dispersion and alignment of cMWCNT into the hydrogel are clearly demonstrated by small angle neutron scattering. The obtained aligned cMWCNT-embodied hydrogel is stable over 7 days at room temperature and as well at body temperature (i.e. 37 °C). As unique approach, the formation of MWCNT-hydrogel composite is investigated combining rheology with molecular dynamic and quantum mechanical calculations. The increase of MWCNT concentration into the hydrogel decreases the total energy promoting structural stabilization and increase of stiffness. The remote aligning of injectable hydrogel-based scaffold opens up horizons in the engineering of functional tissues which requires specific cell orientation.publishedVersio

    Aligned multi-walled carbon nanotube-embodied hydrogel via low magnetic field : A strategy for engineering aligned injectable scaffolds

    Get PDF
    Injectable scaffolds are a promising strategy to restore and regenerate damaged and diseased tissues. They require minimally invasive procedure and allow the formation of an in-situ structure of any shape. However, the formation of 3D in-situ structure with aligned morphologies using a method which could be easily transferred to clinical settings remains a challenge. Herein, the rational design of an aligned injectable hydrogel-based scaffold via remote-induced alignment is reported. Carboxylated multi-walled carbon nanotubes (cMWCNT) are aligned into hydrogel via low magnetic field. The uniform dispersion and alignment of cMWCNT into the hydrogel are clearly demonstrated by small angle neutron scattering. The obtained aligned cMWCNT-embodied hydrogel is stable over 7 days at room temperature and as well at body temperature (i.e. 37 °C). As unique approach, the formation of MWCNT-hydrogel composite is investigated combining rheology with molecular dynamic and quantum mechanical calculations. The increase of MWCNT concentration into the hydrogel decreases the total energy promoting structural stabilization and increase of stiffness. The remote aligning of injectable hydrogel-based scaffold opens up horizons in the engineering of functional tissues which requires specific cell orientation.publishedVersionPeer reviewe

    Anionically stabilized cellulose nanofibrils through succinylation pretreatment in urea–lithium chloride deep eutectic solvent

    No full text
    Abstract Deep eutectic solvents (DESs) are green chemicals that have the potential to replace traditional solvents in chemical reactions. In this study, urea–LiCl DES was used successfully as a reaction medium in the anionic functionalization of wood cellulose with succinic anhydride. The effects of reaction temperature and time on the carboxyl content and yield were evaluated. The analyses of the degree of polymerization and crystallinity revealed that the DES was a nondegrading and nondissolving reaction medium. Three samples with the highest carboxyl contents were further nanofibrillated with a microfluidizer to diameters of 2–7 nm, as observed by atomic force microscopy. Samples treated at 70–80 °C for 2 h gave the best outcome and resulted in highly viscose and transparent gels. The sample treated at 90 °C contained larger nanoparticles and larger aggregates owing to the occurrence of possible side reactions but resulted in better thermal stability

    Polyion complex hydrogels from chemically modified cellulose nanofibrils:structure-function relationship and potential for controlled and pH-responsive release of doxorubicin

    No full text
    Abstract Herein, we report the fabrication of a polyion complex hydrogel from two oppositely charged derivatives of cellulose nanofibrils (CNF). CNF was produced from dissolving pulp through subsequent periodate oxidation, chemical modification, and microfluidization. Three different durations for periodate oxidation (30 min, 120 min, and 180 min) resulted in three different aldehyde contents. Further, two types of chemical modifications were introduced to react with the resulting aldehydes: chlorite oxidation to yield anionic CNF with carboxylic acid groups (DCC) and imination with Girard’s reagent T to yield cationic CNF containing quaternary ammonium groups (CDAC). Functional group contents were assessed using conductometric titration and elemental analysis, while nanofibril morphologies were assessed using atomic force microscopy (AFM). Longer durations of periodate oxidation did not yield different width profile but was found to decrease fibril length. The formation of self-standing hydrogel through mixing of DCC and CDAC dispersions was investigated. Oscillatory rheology was performed to assess the relative strengths of different gels. Self-standing hydrogels were obtained from mixture of DCC180 and CDAC180 dispersions in acetate buffer at pH 4 and 5 at a low concentration of 0.5% w/w that displayed approximately 10-fold increase in storage and loss moduli compared to those of the individual dispersions. Self-standing gels containing doxorubicin (an anticancer drug) displayed pH-responsive release profiles. At physiological pH 7.4, approximately 65% of doxorubicin was retained past a burst release regime, while complete release was observed within 5 days at pH 4. Biocompatibility of DCC180, CDAC180, and their mixture were investigated through quantification of the metabolic activity of NIH3T3 cells in vitro. No significant cytotoxicity was observed at concentrations up to 900 µg/mL. In short, the nanocellulose-based polyion complex hydrogels obtained in this study are promising nature-derived materials for biomedical applications

    Recycling perovskite solar cells through inexpensive quality recovery andreuse of patterned indium tin oxide and substrates from expired devices bysingle solvent treatment

    No full text
    Abstract The predominant expense for the manufacturing cost of new generation photovoltaic devices including perovskite solar cells (PSC) emanate from the use of indium tin oxide (ITO) as transparent electrodes and is due to its limited supply and patterning costs. The PSC devices also struggle with low lifetime, and thus it has a high potential of generating rapid end-of-life (EOL) products resulting in surged photovoltaic wastes. In addition, the PSC devices contain unfavorable toxic elements such as lead and thus any effort to tackle the problem would help the environmental sustainability. In this article, the aforementioned issues were solved by the quality recovery of patterned ITO substrates from old devices through “top-down” approach, which essentially stripped out the unsought component layers present on ITO and subsequently reused for fresh devices. The PSC recycling and ITO recovery was done by treating EOL device with a single non-volatile inexpensive alkaline solvent. The appropriately recovered ITO had shown (optical, surface and electrical) properties close to the reference and was found to be suitable for direct reuse as the best power conversion efficiency (PCE) of recycled PSC varied only 0.85% less than the initial device

    Vertically aligned carbon nanotube micropillars induce unidirectional chondrocyte orientation

    No full text
    Abstract Articular cartilage is a highly organized tissue with very limited regenerative capacities. One limitation to mimic cartilage structure in tissue engineering is due to specific orientation of chondrocytes. Here, we use vertically aligned multi-wall carbon nanotubes (VA-MWCNT) micropillars to achieve unidirectional orientation of chondrocytes. We demonstrate that the attachment, proliferation and extracellular matrix (ECM) production by the chondrocytes is enhanced on VA-MWCNT micropillars compared to controls. The nanostructures offered by the VA-MWCNT allow the chondrocytes to anchor at cellular structure level, while mechanical flexibility of the VA-MWCNT micropillars mimics the cartilage’s natural ECM Young’s modulus. We exploit these features to extrapolate the contractile forces exerted by the chondrocytes on the micropillars. Our findings will guide the design of VA-MWCNT templates to model cell’s contractile forces. Furthermore, the capability of VA-MWCNTs to induce unidirectional chondrocytes orientation open new perspectives in cartilage tissue engineering
    corecore