58 research outputs found

    Hemodynamic Effects of Anthrax Toxins in the Rabbit Model and the Cardiac Pathology Induced by Lethal Toxin

    Get PDF
    Anthrax lethal toxin (LeTx) and edema toxin (EdTx) have been shown to alter hemodynamics in the rodent model, while LeTx primarily is reported to induce extensive tissue pathology. However, the rodent model has limitations when used for comparison to higher organisms such as humans. The rabbit model, on the other hand, has gained recognition as a useful model for studying anthrax infection and its pathophysiological effects. In this study, we assessed the hemodynamic effects of lethal toxin (LeTx) and edema toxin (EdTx) in the rabbit model using physiologically relevant amounts of the toxins. Moreover, we further examine the pathological effects of LeTx on cardiac tissue. We intravenously injected Dutch-belted rabbits with either low-dose and high-dose recombinant LeTx or a single dose of EdTx. The animals’ heart rate and mean arterial pressure were continuously monitored via telemetry until either 48 or 72 h post-challenge. Additional animals challenged with LeTx were used for cardiac troponin I (cTnI) quantitation, cardiac histopathology, and echocardiography. LeTx depressed heart rate at the lower dose and mean arterial pressure (MAP) at the higher dose. EdTx, on the other hand, temporarily intensified heart rate while lowering MAP. Both doses of LeTx caused cardiac pathology with the higher dose having a more profound effect. Lastly, left-ventricular dilation due to LeTx was not apparent at the given time-points. Our study demonstrates the hemodynamic effects of anthrax toxins, as well as the pathological effects of LeTx on the heart in the rabbit model, and it provides further evidence for the toxins’ direct impact on the heart

    Novel Exercise Hardware Requirements, Development, and Selection Process for Long-Duration Space Flight

    Get PDF
    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat the physical toll that exploration space flight may take on the crew, NASAs Human Research Program is charged with developing exercise protocols and hardware to maintain astronaut health and fitness during long-term missions. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. As NASA aims toward space travel outside of low-earth orbit (LEO), the constraints placed upon exercise equipment onboard the vehicle increase. Proposed vehicle architectures for transit to and from locations outside of LEO call for limits to equipment volume, mass, and power consumption. While NASA has made great strides in providing for the physical welfare of the crew, the equipment currently used onboard ISS is too large, too massive, and too power hungry to consider for long-duration flight. The goal of the Advanced Exercise Concepts (AEC) project is to maintain the resistive and aerobic capabilities of the current, ISS suite of exercise equipment, while making reductions in size, mass, and power consumption in order to make the equipment suitable for long-duration missions

    Comprehensive Molecular Characterization of Pheochromocytoma and Paraganglioma

    Get PDF
    SummaryWe report a comprehensive molecular characterization of pheochromocytomas and paragangliomas (PCCs/PGLs), a rare tumor type. Multi-platform integration revealed that PCCs/PGLs are driven by diverse alterations affecting multiple genes and pathways. Pathogenic germline mutations occurred in eight PCC/PGL susceptibility genes. We identified CSDE1 as a somatically mutated driver gene, complementing four known drivers (HRAS, RET, EPAS1, and NF1). We also discovered fusion genes in PCCs/PGLs, involving MAML3, BRAF, NGFR, and NF1. Integrated analysis classified PCCs/PGLs into four molecularly defined groups: a kinase signaling subtype, a pseudohypoxia subtype, a Wnt-altered subtype, driven by MAML3 and CSDE1, and a cortical admixture subtype. Correlates of metastatic PCCs/PGLs included the MAML3 fusion gene. This integrated molecular characterization provides a comprehensive foundation for developing PCC/PGL precision medicine

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Telemetric left ventricular monitoring using wireless telemetry in the rabbit model

    No full text
    Abstract Background Heart failure is a critical condition that affects many people and often results from left ventricular dysfunction. Numerous studies investigating this condition have been performed using various model systems. To do so, investigators must be able to accurately measure myocardial performance in order to determine the degree of left ventricular function. In this model development study, we employ a wireless telemetry system purchased from Data Sciences International to continuously assess left ventricular function in the rabbit model. Findings We surgically implanted pressure-sensitive catheters fitted to wireless radio-transmitters into the left ventricle of Dutch-belted rabbits. Following recovery of the animals, we continuously recorded indices of cardiac contractility and ventricular relaxation at baseline for a given time period. The telemetry system allowed us to continuously record baseline left ventricular parameters for the entire recording period. During this time, the animals were unrestrained and fully conscious. The values we recorded are similar to those obtained using other reported methods. Conclusions The wireless telemetry system can continuously measure left ventricular pressure, cardiac contractility, and cardiac relaxation in the rabbit model. These results, which were obtained just as baseline levels, substantiate the need for further validation in this model system of left ventricular assessment.</p
    corecore