104 research outputs found

    Enhanced gene expression from retroviral vectors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retroviruses are widely used to transfer genes to mammalian cells efficiently and stably. However, genetic elements required for high-level gene expression are incompatible with standard systems. The retroviral RNA genome is produced by cellular transcription and post-transcriptional processing within packaging cells: Introns present in the retroviral genomic transcript are removed by splicing, while polyadenylation signals lead to the production of ineffective truncated genomes. Furthermore strong enhancer/promoters within the retroviral payload lead to detrimental competition with the retroviral enhancer/promoter.</p> <p>Results</p> <p>By exploiting a new method of producing the retroviral genome <it>in vitro </it>it is possible to produce infectious retroviral particles carrying a high-level expression cassette that completely prohibits production of infectious retroviral particles by conventional methods.</p> <p>We produced an expression cassette comprising a strong enhancer/promoter, an optimised intron, the GFP open reading frame and a strong polyadenylation signal. This cassette was cloned into both a conventional MMLV retroviral vector and a vector designed to allow <it>in vitro </it>transcription of the retroviral genome by T7 RNA polymerase.</p> <p>When the conventional retroviral vector was transfected into packaging cells, the expression cassette drove strong GFP expression, but no infectious retrovirus was produced. Introduction of the <it>in vitro </it>produced uncapped retroviral genomic transcript into the packaging cells did not lead to any detectable GFP expression. However, infectious retrovirus was easily recovered, and when used to infect target primary human cells led to very high GFP expression – up to 3.5 times greater than conventional retroviral LTR-driven expression.</p> <p>Conclusion</p> <p>Retroviral vectors carrying an optimized high-level expression cassette do not produce infectious virions when introduced into packaging cells by transfection of DNA. Infectious retrovirus carrying the same cassette is readily produced when packaging cells are transfected with <it>in vitro </it>transcribed retroviral genomic RNA. The applications of this technique are not limited to producing the higher levels of transgene expression demonstrated here. For example, novel reporters with alternatively spliced exon-intron configurations could readily be transduced into virtually any cell. Furthermore, because the <it>in vitro </it>transcripts are not translated within the packaging cells, retroviruses carrying genes lethal to the packaging cells can also be produced.</p

    A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice withKIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers

    Mural Cell Associated VEGF Is Required for Organotypic Vessel Formation

    Get PDF
    Background: Blood vessels comprise endothelial cells, mural cells (pericytes/vascular smooth muscle cells) and basement membrane. During angiogenesis, mural cells are recruited to sprouting endothelial cells and define a stabilizing context, comprising cell-cell contacts, secreted growth factors and extracellular matrix components, that drives vessel maturation and resistance to anti-angiogenic therapeutics. Methods and Findings: To better understand the basis for mural cell regulation of angiogenesis, we conducted high content imaging analysis on a microtiter plate format in vitro organotypic blood vessel system comprising primary human endothelial cells co-cultured with primary human mural cells. We show that endothelial cells co-cultured with mural cells undergo an extensive series of phenotypic changes reflective of several facets of blood vessel formation and maturation: Loss of cell proliferation, pathfinding-like cell migration, branching morphogenesis, basement membrane extracellular matrix protein deposition, lumen formation, anastamosis and development of a stabilized capillary-like network. This phenotypic sequence required endothelial-mural cell-cell contact, mural cell-derived VEGF and endothelial VEGFR2 signaling. Inhibiting formation of adherens junctions or basement membrane structures abrogated network formation. Notably, inhibition of mural cell VEGF expression could not be rescued by exogenous VEGF. Conclusions: These results suggest a unique role for mural cell-associated VEGF in driving vessel formation and maturation

    Comparison of IRES and F2A-Based Locus-Specific Multicistronic Expression in Stable Mouse Lines

    Get PDF
    Efficient and stoichiometric expression of genes concatenated by bi- or multi-cistronic vectors has become an invaluable tool not only in basic biology to track and visualize proteins in vivo, but also for vaccine development and in the clinics for gene therapy. To adequately compare, in vivo, the effectiveness of two of the currently popular co-expression strategies - the internal ribosome entry site (IRES) derived from the picornavirus and the 2A peptide from the foot-and-mouth disease virus (FDMV) (F2A), we analyzed two locus-specific knock-in mouse lines co-expressing SRY-box containing gene 9 (Sox9) and enhanced green fluorescent protein (EGFP) linked by the IRES (Sox9IRES-EGFP) or the F2A (Sox9F2A-EGFP) sequence. Both the constructs expressed Sox9 and EGFP proteins in the appropriate Sox9 expression domains, with the IRES construct expressing reduced levels of EGFP compared to that of the F2A. The latter, on the other hand, produced about 42.2% Sox9-EGFP fusion protein, reflecting an inefficient ribosome ‘skipping’ mechanism. To investigate if the discrepancy in the ‘skipping’ process was locus-dependent, we further analyzed the FLAG3-Bapx1F2A-EGFP mouse line and found similar levels of fusion protein being produced. To assess if EGFP was hindering the ‘skipping’ mechanism, we examined another mouse line co-expressing Bagpipe homeobox gene 1 homolog (Bapx1), Cre recombinase and EGFP (Bapx1F2A-Cre-F2A-EGFP). While the ‘skipping’ was highly efficient between Bapx1 and Cre, the ‘skipping’ between Cre and EGFP was highly inefficient. We have thus demonstrated in our comparison study that the efficient and close to equivalent expression of genes linked by F2A is achievable in stable mouse lines, but the EGFP reporter may cause undesirable inhibition of the ‘skipping’ at the F2A sequence. Hence, the use of other reporter genes should be explored when utilizing F2A peptides

    Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment

    Get PDF
    Context Although the pupil light reflex has been widely used as a clinical diagnostic tool for autonomic nervous system dysfunction, there is no systematic review available to summarize the evidence that the pupil light reflex is a sensitive method to detect parasympathetic dysfunction. Meanwhile, the relationship between parasympathetic functioning and hearing impairment is relatively unknown. Objectives To 1) review the evidence for the pupil light reflex being a sensitive method to evaluate parasympathetic dysfunction, 2) review the evidence relating hearing impairment and parasympathetic activity and 3) seek evidence of possible connections between hearing impairment and the pupil light reflex. Methods Literature searches were performed in five electronic databases. All selected articles were categorized into three sections: pupil light reflex and parasympathetic dysfunction, hearing impairment and parasympathetic activity, pupil light reflex and hearing impairment. Results Thirty-eight articles were included in this review. Among them, 36 articles addressed the pupil light reflex and parasympathetic dysfunction. We summarized the information in these data according to different types of parasympathetic-related diseases. Most of the studies showed a difference on at least one pupil light reflex parameter between patients and healthy controls. Two articles discussed the relationship between hearing impairment and parasympathetic activity. Both studies reported a reduced parasympathetic activity in the hearing impaired groups. The searches identified no results for pupil light reflex and hearing impairment. Discussion and Conclusions As the first systematic review of the evidence, our findings suggest that the pupil light reflex is a sensitive tool to assess the presence of parasympathetic dysfunction. Maximum constriction velocity and relative constriction amplitude appear to be the most sensitive parameters. There are only two studies investigating the relationship between parasympathetic activity and hearing impairment, hence further research is needed. The pupil light reflex could be a candidate measurement tool to achieve this goal

    In Vivo Optical Imaging of Acute Myeloid Leukemia by Green Fluorescent Protein: Time-Domain Autofluorescence Decoupling, Fluorophore Quantification, and Localization

    No full text
    Human xenografts of acute myeloid leukemia (AML) in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice result in disease states of diffuse, nonpalpable tissue infiltrates exhibiting a variable disease course, with some animals not developing a disease phenotype. Thus, disease staging and, more critically, quantification of preclinical therapeutic effect in these models are particularly difficult. In this study, we present the generation of a green fluorescent protein (GFP)-labeled human leukemic cell line, NB4, and validate the potential of a time-domain imager fitted with a 470 nm picosecond pulsed laser diode to decouple GFP fluorescence from autofluorescence on the basis of fluorescence lifetime and thus determine the depth and relative concentration of GFP inclusions in phantoms of homogeneous and heterogeneous optical properties. Subsequently, we developed an optical imageable human xenograft model of NB4-GFP AML and illustrate early disease detection, depth discrimination of leukemic infiltrates, and longitudinal monitoring of disease course employing time-domain optical imaging. We conclude that early disease detection through use of time-domain imaging in this initially slowly progressing AML xenograft model permits accurate disease staging and should aid in future preclinical development of therapeutics for AML
    • …
    corecore