240 research outputs found

    Community-associated Methicillin-resistant Staphylococcus aureus Isolates and Healthcare-Associated Infections1

    Get PDF
    MRSA isolates phenotypically similar to community-associated strains have become the predominant isolates associated with healthcare-associated MRSA in our hospital

    The Potential Trajectory of Carbapenem-Resistant Enterobacteriaceae, an Emerging Threat to Health-Care Facilities, and the Impact of the Centers for Disease Control and Prevention Toolkit.

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE), a group of pathogens resistant to most antibiotics and associated with high mortality, are a rising emerging public health threat. Current approaches to infection control and prevention have not been adequate to prevent spread. An important but unproven approach is to have hospitals in a region coordinate surveillance and infection control measures. Using our Regional Healthcare Ecosystem Analyst (RHEA) simulation model and detailed Orange County, California, patient-level data on adult inpatient hospital and nursing home admissions (2011-2012), we simulated the spread of CRE throughout Orange County health-care facilities under 3 scenarios: no specific control measures, facility-level infection control efforts (uncoordinated control measures), and a coordinated regional effort. Aggressive uncoordinated and coordinated approaches were highly similar, averting 2,976 and 2,789 CRE transmission events, respectively (72.2% and 77.0% of transmission events), by year 5. With moderate control measures, coordinated regional control resulted in 21.3% more averted cases (n = 408) than did uncoordinated control at year 5. Our model suggests that without increased infection control approaches, CRE would become endemic in nearly all Orange County health-care facilities within 10 years. While implementing the interventions in the Centers for Disease Control and Prevention's CRE toolkit would not completely stop the spread of CRE, it would cut its spread substantially, by half

    The Economic Value of the Centers for Disease Control and Prevention Carbapenem-Resistant Enterobacteriaceae Toolkit

    Get PDF
    OBJECTIVEWhile previous work showed that the Centers for Disease Control and Prevention toolkit for carbapenem-resistant Enterobacteriaceae (CRE) can reduce spread regionally, these interventions are costly, and decisions makers want to know whether and when economic benefits occur.DESIGNEconomic analysisSETTINGOrange County, CaliforniaMETHODSUsing our Regional Healthcare Ecosystem Analyst (RHEA)-generated agent-based model of all inpatient healthcare facilities, we simulated the implementation of the CRE toolkit (active screening of interfacility transfers) in different ways and estimated their economic impacts under various circumstances.RESULTSCompared to routine control measures, screening generated cost savings by year 1 when hospitals implemented screening after identifying ≤20 CRE cases (saving 2,0002,000-9,000) and by year 7 if all hospitals implemented in a regional coordinated manner after 1 hospital identified a CRE case (hospital perspective). Cost savings was achieved only if hospitals independently screened after identifying 10 cases (year 1, third-party payer perspective). Cost savings was achieved by year 1 if hospitals independently screened after identifying 1 CRE case and by year 3 if all hospitals coordinated and screened after 1 hospital identified 1 case (societal perspective). After a few years, all strategies cost less and have positive health effects compared to routine control measures; most strategies generate a positive cost-benefit each year.CONCLUSIONSActive screening of interfacility transfers garnered cost savings in year 1 of implementation when hospitals acted independently and by year 3 if all hospitals collectively implemented the toolkit in a coordinated manner. Despite taking longer to manifest, coordinated regional control resulted in greater savings over time.Infect Control Hosp Epidemiol 2018;39:516-524

    Longitudinal analysis of SARS-CoV-2 infection and vaccination in the LA-SPARTA cohort reveals increased risk of infection in vaccinated Hispanic participants

    Get PDF
    IntroductionSARS-CoV-2 is the etiologic agent of coronavirus disease 2019 (COVID-19). Questions remain regarding correlates of risk and immune protection against COVID-19.MethodsWe prospectively enrolled 200 participants with a high risk of SARS-CoV-2 occupational exposure at a U.S. medical center between December 2020 and April 2022. Participant exposure risks, vaccination/infection status, and symptoms were followed longitudinally at 3, 6, and 12 months, with blood and saliva collection. Serological response to the SARS-CoV-2 spike holoprotein (S), receptor binding domain (RBD) and nucleocapsid proteins (NP) were quantified by ELISA assay.ResultsBased on serology, 40 of 200 (20%) participants were infected. Healthcare and non-healthcare occupations had equivalent infection incidence. Only 79.5% of infected participants seroconverted for NP following infection, and 11.5% were unaware they had been infected. The antibody response to S was greater than to RBD. Hispanic ethnicity was associated with 2-fold greater incidence of infection despite vaccination in this cohort.DiscussionOverall, our findings demonstrate: 1) variability in the antibody response to SARS-CoV-2 infection despite similar exposure risk; 2) the concentration of binding antibody to the SARS-CoV-2 S or RBD proteins is not directly correlated with protection against infection in vaccinated individuals; and 3) determinants of infection risk include Hispanic ethnicity despite vaccination and similar occupational exposure

    Clumpy outer Galaxy molecular clouds and the steepening of the IMF

    Get PDF
    We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437. We used the BIMA array in combination with IRAM 30-m and NRAO 12-m observations. The GMC's in which the regions are embedded were studied by means of KOSMA 3-m CO(2-1) observations. The properties the CO and CS clumps are analyzed and compared with newly derived results of previously published single-dish measurements of local clouds (OrionB South and Rosette). We find that the slopes of the clump mass distributions (-1.28 and -1.49, for WB89 85 and WB89 380, respectively) are somewhat less steep than found for most local clouds, but similar to those of clouds which have been analyzed with the same clumpfind program. We investigate the clump stability by using the virial theorem, including all possible contributions (gravity, turbulence, magnetic fields, and pressure due to the interclump gas). It appears that under reasonable assumptions a combination of these forces would render most clumps stable. Comparing only gravity and turbulence, we find that in the far-outer Galaxy clouds, these forces are in equilibium (virial parameter alpha~1) for clumps down to the lowest masses found (a few Msol). For clumps in the local clouds alpha~1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in these outer Galaxy clumps gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. Although there are some caveats, due to the inhomogeneity of the data used, this might explain the apparently steeper IMF found in the outer Galaxy.Comment: 29 pages, including 9 tables, 21 figures. Accepted for Astron. Astrop

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry
    corecore