177 research outputs found

    Mystery Solved: The Identification of the Two Missing Romanov Children Using DNA Analysis

    Get PDF
    One of the greatest mysteries for most of the twentieth century was the fate of the Romanov family, the last Russian monarchy. Following the abdication of Tsar Nicholas II, he and his wife, Alexandra, and their five children were eventually exiled to the city of Yekaterinburg. The family, along with four loyal members of their staff, was held captive by members of the Ural Soviet. According to historical reports, in the early morning hours of July 17, 1918 the entire family along with four loyal members of their staff was executed by a firing squad. After a failed attempt to dispose of the remains in an abandoned mine shaft, the bodies were transported to an open field only a few kilometers from the mine shaft. Nine members of the group were buried in one mass grave while two of the children were buried in a separate grave. With the official discovery of the larger mass grave in 1991, and subsequent DNA testing to confirm the identities of the Tsar, the Tsarina, and three of their daughters – doubt persisted that these remains were in fact those of the Romanov family. In the summer of 2007, a group of amateur archeologists discovered a collection of remains from the second grave approximately 70 meters from the larger grave. We report forensic DNA testing on the remains discovered in 2007 using mitochondrial DNA (mtDNA), autosomal STR, and Y- STR testing. Combined with additional DNA testing of material from the 1991 grave, we have virtually irrefutable evidence that the two individuals recovered from the 2007 grave are the two missing children of the Romanov family: the Tsarevich Alexei and one of his sisters

    Comparison of three methods of DNA extraction from human bones with different degrees of degradation

    Get PDF
    There is a necessity for deceased identification as a result of many accidents and sometimes bones are the only accessible source of DNA. So far, a universal method that allows for extraction of DNA from materials at different stages of degradation does not exist. The aims of this study were: the comparison of three methods of DNA extraction from bones with different degree of degradation and an evaluation of the usefulness of these methods in forensic genetics. The efficiency of DNA extraction, the degree of extract contamination by polymerase chain reaction (PCR) inhibitors and the possibility of determining the STR loci profile were especially being compared. Nuclear DNA from bones at different states of degradation was isolated using three methods: classical, organic phenol–chloroform extraction, DNA extraction from crystal aggregates and extraction by total demineralisation. Total demineralisation is the best method for most cases of DNA extraction from bones, although it does not provide pure DNA. DNA extraction from aggregates removes inhibitors much better and is also a good method of choice when identity determination of exhumed remains is necessary. In the case of not buried bones (remains found outside) total demineralisation or phenol–chloroform protocols are more efficient for successful DNA extraction

    Staying out in the cold: glacial refugia and mitochondrial DNA phylogeography in ancient European brown bears

    Get PDF
    Models for the development of species distribution in Europe typically invoke restriction in three temperate Mediterranean refugia during glaciations, from where recolonization of central and northern Europe occurred. The brown bear, Ursus arctos, is one of the taxa from which this model is derived. Sequence data generated from brown bear fossils show a complex phylogeographical history for western European populations. Long-term isolation in separate refugia is not required to explain our data when considering the palaeontological distribution of brown bears. We propose continuous gene flow across southern Europe, from which brown bear populations expanded after the last glaciation

    DNA Fingerprinting of Pearls to Determine Their Origins

    Get PDF
    We report the first successful extraction of oyster DNA from a pearl and use it to identify the source oyster species for the three major pearl-producing oyster species Pinctada margaritifera, P. maxima and P. radiata. Both mitochondrial and nuclear gene fragments could be PCR-amplified and sequenced. A polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in the internal transcribed spacer (ITS) region was developed and used to identify 18 pearls of unknown origin. A micro-drilling technique was developed to obtain small amounts of DNA while maintaining the commercial value of the pearls. This DNA fingerprinting method could be used to document the source of historic pearls and will provide more transparency for traders and consumers within the pearl industry

    To Clone or Not To Clone: Method Analysis for Retrieving Consensus Sequences In Ancient DNA Samples

    Get PDF
    The challenges associated with the retrieval and authentication of ancient DNA (aDNA) evidence are principally due to post-mortem damage which makes ancient samples particularly prone to contamination from “modern” DNA sources. The necessity for authentication of results has led many aDNA researchers to adopt methods considered to be “gold standards” in the field, including cloning aDNA amplicons as opposed to directly sequencing them. However, no standardized protocol has emerged regarding the necessary number of clones to sequence, how a consensus sequence is most appropriately derived, or how results should be reported in the literature. In addition, there has been no systematic demonstration of the degree to which direct sequences are affected by damage or whether direct sequencing would provide disparate results from a consensus of clones

    Using Classical Population Genetics Tools with Heterochroneous Data: Time Matters!

    Get PDF
    BACKGROUND:New polymorphism datasets from heterochroneous data have arisen thanks to recent advances in experimental and microbial molecular evolution, and the sequencing of ancient DNA (aDNA). However, classical tools for population genetics analyses do not take into account heterochrony between subsets, despite potential bias on neutrality and population structure tests. Here, we characterize the extent of such possible biases using serial coalescent simulations. METHODOLOGY/PRINCIPAL FINDINGS:We first use a coalescent framework to generate datasets assuming no or different levels of heterochrony and contrast most classical population genetic statistics. We show that even weak levels of heterochrony ( approximately 10% of the average depth of a standard population tree) affect the distribution of polymorphism substantially, leading to overestimate the level of polymorphism theta, to star like trees, with an excess of rare mutations and a deficit of linkage disequilibrium, which are the hallmark of e.g. population expansion (possibly after a drastic bottleneck). Substantial departures of the tests are detected in the opposite direction for more heterochroneous and equilibrated datasets, with balanced trees mimicking in particular population contraction, balancing selection, and population differentiation. We therefore introduce simple corrections to classical estimators of polymorphism and of the genetic distance between populations, in order to remove heterochrony-driven bias. Finally, we show that these effects do occur on real aDNA datasets, taking advantage of the currently available sequence data for Cave Bears (Ursus spelaeus), for which large mtDNA haplotypes have been reported over a substantial time period (22-130 thousand years ago (KYA)). CONCLUSIONS/SIGNIFICANCE:Considering serial sampling changed the conclusion of several tests, indicating that neglecting heterochrony could provide significant support for false past history of populations and inappropriate conservation decisions. We therefore argue for systematically considering heterochroneous models when analyzing heterochroneous samples covering a large time scale

    The Effect of Inappropriate Calibration: Three Case Studies in Molecular Ecology

    Get PDF
    Time-scales estimated from sequence data play an important role in molecular ecology. They can be used to draw correlations between evolutionary and palaeoclimatic events, to measure the tempo of speciation, and to study the demographic history of an endangered species. In all of these studies, it is paramount to have accurate estimates of time-scales and substitution rates. Molecular ecological studies typically focus on intraspecific data that have evolved on genealogical scales, but often these studies inappropriately employ deep fossil calibrations or canonical substitution rates (e.g., 1% per million years for birds and mammals) for calibrating estimates of divergence times. These approaches can yield misleading estimates of molecular time-scales, with significant impacts on subsequent evolutionary and ecological inferences. We illustrate this calibration problem using three case studies: avian speciation in the late Pleistocene, the demographic history of bowhead whales, and the Pleistocene biogeography of brown bears. For each data set, we compare the date estimates that are obtained using internal and external calibration points. In all three cases, the conclusions are significantly altered by the application of revised, internally-calibrated substitution rates. Collectively, the results emphasise the importance of judicious selection of calibrations for analyses of recent evolutionary events
    corecore