5,860 research outputs found

    Determinants of Metabolic Health Across Body Mass Index Categories in Central Europe: A Comparison Between Swiss and Czech Populations.

    Get PDF
    Comparisons among countries can help to identify opportunities for the reduction of inequalities in cardiometabolic health. The present cross-sectional analysis and meta-analysis aim to address to what extent obesity traits, socioeconomic, and behavioral factors determine poor metabolic health across body mass index (BMI) categories in two urban population-based samples from Central Europe. Data from the CoLaus (~6,000 participants; Lausanne, Switzerland) and the Kardiovize Brno 2030 (~2,000 participants; Brno, Czech Republic) cohorts. For each cohort, logistic regression analyses were performed to identify the main determinants of poor metabolic health overall and stratified by body mass index (BMI) categories. The results of each cohort were then combined in a meta-analysis. We first observed that waist circumference and body fat mass were associated with metabolic health, especially in non-obese individuals. Moreover, increasing age, being male, having low-medium educational level, abdominal obesity, and high body fat mass were the main determinants of the metabolically unhealthy profile in both cohorts. Meta-analysis stratified by BMI categories confirmed the previous results with slight differences across BMI categories. In fact, increasing age and being male were the main determinants of poor metabolic health independent of obesity status. In contrast, low educational level and current smoking were associated with poor metabolic health only in non-obese individuals. In line, public health strategies against obesity and related comorbidities should aim to improve social conditions and to promote healthy lifestyles before the progression of metabolic disorders

    Fine particle pH and the partitioning of nitric acid during winter in the northeastern United States

    Get PDF
    Particle pH is a critical but poorly constrained quantity that affects many aerosol processes and properties, including aerosol composition, concentrations, and toxicity. We assess PM1 pH as a function of geographical location and altitude, focusing on the northeastern U.S., based on aircraft measurements from the Wintertime Investigation of Transport, Emissions, and Reactivity campaign (1 February to 15 March 2015). Particle pH and water were predicted with the ISORROPIA-II thermodynamic model and validated by comparing predicted to observed partitioning of inorganic nitrate between the gas and particle phases. Good agreement was found for relative humidity (RH) above 40%; at lower RH observed particle nitrate was higher than predicted, possibly due to organic-inorganic phase separations or nitrate measurement uncertainties associated with low concentrations (nitrate \u3c 1 ”g m−3). Including refractory ions in the pH calculations did not improve model predictions, suggesting they were externally mixed with PM1 sulfate, nitrate, and ammonium. Sample line volatilization artifacts were found to be minimal. Overall, particle pH for altitudes up to 5000 m ranged between −0.51 and 1.9 (10th and 90th percentiles) with a study mean of 0.77 ± 0.96, similar to those reported for the southeastern U.S. and eastern Mediterranean. This expansive aircraft data set is used to investigate causes in variability in pH and pH-dependent aerosol components, such as PM1 nitrate, over a wide range of temperatures (−21 to 19°C), RH (20 to 95%), inorganic gas, and particle concentrations and also provides further evidence that particles with low pH are ubiquitous

    Comparative study of CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts in the CO-PROX reaction

    Get PDF
    CuO supported on CeO2, Ce0.8Zr0.2O2 and Ce0.8Al0.2O2 based catalysts (6%wt Cu) were synthesized and tested in the preferential oxidation of CO in a H2-rich stream (CO-PROX). Nanocrystalline supports, CeO2 and solid solutions of modified CeO2 with zirconium and aluminum were prepared by a freeze-drying method. CuO was supported by incipient wetness impregnation and calcination at 400 C. All catalysts exhibit high activity in the CO-PROX reaction and selectivity to CO2 at low reaction temperature, being the catalyst supported on CeO2 the more active and stable. The influence of the presence of CO2 and H2O was also studied

    Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars

    Get PDF
    Convective line asymmetries in the optical spectrum of two metal-poor stars, Gmb1830 and HD140283, are compared to those observed for solar metallicity stars. The line bisectors of the most metal-poor star, the subgiant HD140283, show a significantly larger velocity span that the expectations for a solar-metallicity star of the same spectral type and luminosity class. The enhanced line asymmetries are interpreted as the signature of the lower metal content, and therefore opacity, in the convective photospheric patterns. These findings point out the importance of three-dimensional convective velocity fields in the interpretation of the observed line asymmetries in metal-poor stars, and in particular, urge for caution when deriving isotopic ratios from observed line shapes and shifts using one-dimensional model atmospheres. The mean line bisector of the photospheric atomic lines is compared with those measured for the strong Mg I b1 and b2 features. The upper part of the bisectors are similar, and assuming they overlap, the bottom end of the stronger lines, which are formed higher in the atmosphere, goes much further to the red. This is in agreement with the expected decreasing of the convective blue-shifts in upper atmospheric layers, and compatible with the high velocity redshifts observed in the chromosphere, transition region, and corona of late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in The Astrophysical Journa

    Psychotic Alzheimer\u27s disease is associated with gender-specific tau phosphorylation abnormalities

    Get PDF
    Converging evidence suggests that psychotic Alzheimer\u27s disease (AD + P) is associated with an acceleration of frontal degeneration, with tau pathology playing a primary role. Previous histopathologic and biomarker studies have specifically implicated tau pathology in this condition. To precisely quantify tau abnormalities in the frontal cortex in AD + P, we used a sensitive biochemical assay of total tau and 4 epitopes of phospho-tau relevant in AD pathology in a postmortem sample of AD + P and AD - P. Samples of superior frontal gyrus from 26 AD subjects without psychosis and 45 AD + P subjects with psychosis were analyzed. Results of enzyme-linked immunosorbent assay demonstrate that AD + P females, but not males, had significantly higher levels of phosphorylated tau in the frontal cortex. In males, but not females, AD + P was associated with the presence of alpha-synuclein pathology. These results support a gender dissociation of pathology in AD + P. The design of future studies aimed at the elucidation of cognitive and/or functional outcomes; regional brain metabolic deficits; or genetic correlates of AD + P should take gender into consideration. (C) 2014 Elsevier Inc. All rights reserved

    Serum melatonin levels during the first seven days of severe sepsis diagnosis are associated with sepsis severity and mortality

    Get PDF
    Objective: Higher serum melatonin levels have previously been found in patients with severe sepsis who died within 30 days of diagnosis than in survivors. The objective of our study were to determine whether serum melatonin levels during the first seven days of severe sepsis diagnosis could be associated with sepsis severity and mortality. Methods: Multicentre study in eight Spanish Intensive Care Units which enrolled 308 patients with severe sepsis. We determined serum levels of melatonin, malondialdehyde (as biomarker of lipid peroxidation) and tumor necrosis factor-alpha at days 1, 4 and 8 of severe sepsis diagnosis. The study's primary endpoint was 30-day mortality. Results: A total of 103 patients had died and 205 survived at 30 days of severe sepsis diagnosis, with the non-survivors presenting higher serum melatonin levels at days 1 (p<0.001), 4 (p<0.001) and 8 (p<0.001) of severe sepsis diagnosis than the survivor patient group. The multiple logistic regression analysis found that serum melatonin levels at days 1, 4 and 8 of severe sepsis diagnosis (p<0.001, p = 0.01 and p = 0.001, respectively) were associated with mortality adjusted for age, serum lactic acid, SOFA score and diabetes mellitus. Conclusions: The novel and more interesting findings of our study were that serum melatonin levels during the first seven days of severe sepsis diagnosis are associated with sepsis severity and mortality. (C) 2017 Elsevier Espana, S.L.U. and Sociedad Espanola de Enfermedades lnfecciosas y Microbiologia Clinica

    Energy efficiency considerations in integrated IT and optical network resilient infrastructures

    Get PDF
    The European Integrated Project GEYSERS - Generalised Architecture for Dynamic Infrastructure Services - is concentrating on infrastructures incorporating integrated optical network and IT resources in support of the Future Internet with special emphasis on cloud computing. More specifically GEYSERS proposes the concept of Virtual Infrastructures over one or more interconnected Physical Infrastructures comprising both network and IT resources. Taking into consideration the energy consumption levels associated with the ICT today and the expansion of the Internet in size and complexity, that incurring increased energy consumption of both IT and network resources, energy efficient infrastructure design becomes critical. To address this need, in the framework of GEYSERS, we propose energy efficient design of infrastructures incorporating integrated optical network and IT resources, supporting resilient end-to-end services. Our modeling results quantify significant energy savings of the proposed solution by jointly optimizing the allocation of both network and IT resources

    Anthropogenic Control over Wintertime Oxidation of Atmospheric Pollutants

    Get PDF
    Anthropogenic air pollutants such as nitrogen oxides (NO(x) = NO + NO(2)), sulfur dioxide (SO(2)), and volatile organic compounds (VOC), among others, are emitted to the atmosphere throughout the year from energy production and use, transportation, and agriculture. These primary pollutants lead to the formation of secondary pollutants such as fine particulate matter (PM(2.5)) and ozone (O(3)) and perturbations to the abundance and lifetimes of short-lived greenhouse gases. Free radical oxidation reactions driven by solar radiation govern the atmospheric lifetimes and transformations of most primary pollutants and thus their spatial distributions. During winter in the mid and high latitudes, where a large fraction of atmospheric pollutants are emitted globally, such photochemical oxidation is significantly slower. Using observations from a highly instrumented aircraft, we show that multi-phase reactions between gas-phase NO(x) reservoirs and aerosol particles, as well as VOC emissions from anthropogenic activities, lead to a suite of atypical radical precursors dominating the oxidizing capacity in polluted winter air, and thus, the distribution and fate of primary pollutants on a regional to global scale
    • 

    corecore