9,948 research outputs found

    A Cholinergic Synaptically Triggered Event Participates in the Generation of Persistent Activity Necessary for Eye Fixation

    Get PDF
    An exciting topic regarding integrative properties of the nervous system is how transient motor commands or brief sensory stimuli are able to evoke persistent neuronal changes, mainly as a sustained, tonic action potential firing. A persisting firing seems to be necessary for postural maintenance after a previous movement. We have studied in vitro and in vivo the generation of the persistent neuronal activity responsible for eye fixation after spontaneous eye movements. Rat sagittal brainstem slices were used for the intracellular recording of prepositus hypoglossi (PH) neurons and their synaptic activation from nearby paramedian pontine reticular formation (PPRF) neurons. Single electrical pulses applied to the PPRF showed a monosynaptic glutamatergic projection on PH neurons, acting on AMPA-kainate receptors. Train stimulation of the PPRF area evoked a sustained depolarization of PH neurons exceeding (by hundreds of milliseconds) stimulus duration. Both duration and amplitude of this sustained depolarization were linearly related to train frequency. The train-evoked sustained depolarization was the result of interaction between glutamatergic excitatory burst neurons and cholinergic mesopontine reticular fibers projecting onto PH neurons, because it was prevented by slice superfusion with cholinergic antagonists and mimicked by cholinergic agonists. As expected, microinjections of cholinergic antagonists in the PH nucleus of alert behaving cats evoked a gaze-holding deficit consisting of a re-centering drift of the eye after each saccade. These findings suggest that a slow, cholinergic, synaptically triggered event participates in the generation of persistent activity characteristic of PH neurons carrying eye position signals

    Mitochondrial DNA haplotypes indicate two postglacial re-colonization routes of the spruce bark beetle Ips typographus through northern Europe to Scandinavia

    Get PDF
    Species in northern Europe re-colonized the region after the last glacial maximum via several routes, which could have lingering signatures in current intraspecific trait variation. The spruce bark beetle, Ips typographus, occurs across Europe, and biological differences have been found between southern and northern Scandinavian populations. However, the postglacial history of I. typographus in Scandinavia has not been previously studied at a fine geographical scale. Therefore, we collected specimens across northern Europe and analysed the genetic variation in a quite large mitochondrial fragment (698 bp). A high genetic diversity was found in some of the most northern populations, in the Baltic States, Gotland and central Europe. Detected genetic and phylogeographic structures suggest that I. typographus re-colonized Scandinavia via two pathways, one from the northeast and one from the south. These findings are consistent with the re-colonization history of its host plant, Picea abies. However, we observed low haplotype and nucleotide diversity in southern Scandinavian populations of I. typographus, indicating that (unlike P. abies) it did not disperse across the Baltic Sea in multiple events. Further, the divergence among Scandinavian populations was shallow, conflicting with a scenario where I. typographus expanded concurrently with its host plant from a 'cryptic refugium' in the northwest

    A laboratory characterisation of inorganic iodine emissions from the sea surface: dependence on oceanic variables and parameterisation for global modelling

    Get PDF
    Reactive iodine compounds play a significant role in the atmospheric chemistry of the oceanic boundary layer by influencing the oxidising capacity through catalytically removing O3 and altering the HOx and NOx balance. The sea-to-air flux of iodine over the open ocean is therefore an important quantity in assessing these impacts on a global scale. This paper examines the effect of a number of relevant environmental parameters, including water temperature, salinity and organic compounds, on the magnitude of the HOI and I2 fluxes produced from the uptake of O3 and its reaction with iodide ions in aqueous solution. The results of these laboratory experiments and those reported previously (Carpenter et al., 2013), along with sea surface iodide concentrations measured or inferred from measurements of dissolved total iodine and iodate reported in the literature, were then used to produce parameterised expressions for the HOI and I2 fluxes as a function of wind speed, sea-surface temperature and O3. These expressions were used in the Tropospheric HAlogen chemistry MOdel (THAMO) to compare with MAX-DOAS measurements of iodine monoxide (IO) performed during the HaloCAST-P cruise in the eastern Pacific ocean (Mahajan et al., 2012). The modelled IO agrees reasonably with the field observations, although significant discrepancies are found during a period of low wind speeds (< 3 m s&minus;1), when the model overpredicts IO by up to a factor of 3. The inorganic iodine flux contributions to IO are found to be comparable to, or even greater than, the contribution of organo-iodine compounds and therefore its inclusion in atmospheric models is important to improve predictions of the influence of halogen chemistry in the marine boundary layer

    Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway

    Get PDF
    Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements and modelling studies of oxidised mercury in the polar to sub-tropical marine boundary layer (MBL) have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the MBL over the Galápagos Islands in the equatorial Pacific. Elemental mercury concentration remained low throughout the year, while higher than expected levels of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical MBL cannot be accounted for by bromine oxidation only, or by the inclusion of ozone and hydroxyl. As a two-step oxidation mechanism, where the HgBr intermediate is further oxidised to Hg(II), depends critically on the stability of HgBr, an additional oxidant is needed to react with HgBr to explain more than 50% of the observed oxidised mercury. Based on best available thermodynamic data, we show that atomic iodine, NO2, or HO2 could all play the potential role of the missing oxidant, though their relative importance cannot be determined explicitly at this time due to the uncertainties associated with mercury oxidation kinetics. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation

    Iodine chemistry in the troposphere and its effect on ozone

    Get PDF
    Despite the potential influence of iodine chemistry on the oxidizing capacity of the troposphere, reactive iodine distributions and their impact on tropospheric ozone remain almost unexplored aspects of the global atmosphere. Here we present a comprehensive global modelling experiment aimed at estimating lower and upper limits of the inorganic iodine burden and its impact on tropospheric ozone. Two sets of simulations without and with the photolysis of IxOy oxides (i.e. I2O2, I2O3 and I2O4) were conducted to define the range of inorganic iodine loading, partitioning and impact in the troposphere. Our results show that the most abundant daytime iodine species throughout the middle to upper troposphere is atomic iodine, with an annual average tropical abundance of (0.15-0.55) pptv. We propose the existence of a "tropical ring of atomic iodine" that peaks in the tropical upper troposphere (∼11-14 km) at the equator and extends to the sub-tropics (30°N-30°S). Annual average daytime I = IO ratios larger than 3 are modelled within the tropics, reaching ratios up to ∼20 during vigorous uplift events within strong convective regions. We calculate that the integrated contribution of catalytic iodine reactions to the total rate of tropospheric ozone loss (IOx Loss) is 2-5 times larger than the combined bromine and chlorine cycles. When IxOy photolysis is included, IOx Loss represents an upper limit of approximately 27, 14 and 27% of the tropical annual ozone loss for the marine boundary layer (MBL), free troposphere (FT) and upper troposphere (UT), respectively, while the lower limit throughout the tropical troposphere is ∼9 %. Our results indicate that iodine is the second strongest ozone-depleting family throughout the global marine UT and in the tropical MBL. We suggest that (i) iodine sources and its chemistry need to be included in global tropospheric chemistry models, (ii) experimental programs designed to quantify the iodine budget in the troposphere should include a strategy for the measurement of atomic I, and (iii) laboratory programs are needed to characterize the photochemistry of higher iodine oxides to determine their atmospheric fate since they can potentially dominate halogen-catalysed ozone destruction in the troposphere

    A database of microRNA expression patterns in Xenopus laevis

    Get PDF
    MicroRNAs (miRNAs) are short, non-coding RNAs around 22 nucleotides long. They inhibit gene expression either by translational repression or by causing the degradation of the mRNAs they bind to. Many are highly conserved amongst diverse organisms and have restricted spatio-temporal expression patterns during embryonic development where they are thought to be involved in generating accuracy of developmental timing and in supporting cell fate decisions and tissue identity. We determined the expression patterns of 180 miRNAs in Xenopus laevis embryos using LNA oligonucleotides. In addition we carried out small RNA-seq on different stages of early Xenopus development, identified 44 miRNAs belonging to 29 new families and characterized the expression of 5 of these. Our analyses identified miRNA expression in many organs of the developing embryo. In particular a large number were expressed in neural tissue and in the somites. Surprisingly none of the miRNAs we have looked at show expression in the heart. Our results have been made freely available as a resource in both XenMARK and Xenbase

    Latitudinal distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources

    Get PDF
    Ship-based Multi-Axis Differential Optical Absorption Spectroscopy measurements of iodine monoxide (IO) and atmospheric and seawater Gas Chromatography-Mass Spectrometer observations of methyl iodide (CH3I) were made in the Eastern Pacific marine boundary layer during April 2010 as a part of the HaloCarbon Air Sea Transect-Pacific (HaloCAST-P) scientific cruise. The presence of IO in the open ocean environment was confirmed, with a maximum differential slant column density of 5 × 1013 molecules cm−2 along the 1° elevation angle (corresponding to approximately 1 pptv) measured in the oligotrophic region of the Southeastern Pacific. Such low IO mixing ratios and their observed geographical distribution are inconsistent with satellite estimates and with previous understanding of oceanic sources of iodine. A strong correlation was observed between reactive iodine (defined as IO + I) and CH3I, suggesting common sources

    Novel associations for hypothyroidism include known autoimmune risk loci

    Get PDF
    Hypothyroidism is the most common thyroid disorder, affecting about 5% of the general population. Here we present the first large genome-wide association study of hypothyroidism, in 2,564 cases and 24,448 controls from the customer base of 23andMe, Inc., a personal genetics company. We identify four genome-wide significant associations, two of which are well known to be involved with a large spectrum of autoimmune diseases: rs6679677 near _PTPN22_ and rs3184504 in _SH2B3_ (p-values 3.5e-13 and 3.0e-11, respectively). We also report associations with rs4915077 near _VAV3_ (p-value 8.3e-11), another gene involved in immune function, and rs965513 near _FOXE1_ (p-value 3.1e-14). Of these, the association with _PTPN22_ confirms a recent small candidate gene study, and _FOXE1_ was previously known to be associated with thyroid-stimulating hormone (TSH) levels. Although _SH2B3_ has been previously linked with a number of autoimmune diseases, this is the first report of its association with thyroid disease. The _VAV3_ association is novel. These results suggest heterogeneity in the genetic etiology of hypothyroidism, implicating genes involved in both autoimmune disorders and thyroid function. Using a genetic risk profile score based on the top association from each of the four genome-wide significant regions in our study, the relative risk between the highest and lowest deciles of genetic risk is 2.1

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future
    corecore