3,526 research outputs found

    Promuovere una cultura dell'accoglienza: Quali le rappresentazioni dell'adozione oggi?

    Get PDF
    In the last ten years in Italy, both the number of children in international adoption and the number of prospective adoptive parents have consistently decreased. The present research is aimed at investigating the social representations concerning adoption, adoptive parents and the motivations that can lead to adoption. The general aim is obtain useful information in order to develop specific awareness campaigns to promote a broader culture of acceptance and a more conscious readiness for adoption. We collected data from 265 parents through a self-report questionnaire. The results show that participants have a good knowledge of the adoptive phenomenon, mainly thanks to the media and a number direct contacts with adoptive families in the neighborhood and in the relative network. Adoptive parents were represented as couples without children, wealthy and generous, motivated by the desire to give a family to a needy child. It also emerged that the subjects, in case of lack of children, would have chosen to resort firstly to homologous artificial insemination and to adoption as second choice.Negli ultimi dieci anni nel nostro paese si è verificato un consistente calo non solo del numero dei minori accolti mediante l’adozione internazionale ma anche una riduzione del numero di coppie che presentano disponibilità all’adozione. Il presente studio si propone di indagare quale sia la rappresentazione diffusa nel nostro contesto socio-culturale dell'adozione, dei genitori adottivi e delle motivazioni che possono spingere all’adozione al fine di ottenere informazioni utili a sviluppare campagne di sensibilizzazione specifiche, che possano promuovere una più ampia cultura dell’accoglienza e favorire una maggiore e più consapevole disponibilità all’adozione. A tal fine sono stati coinvolti 265 genitori ai quali è stato somministrato un questionario self-report. I risultati evidenziano come i soggetti abbiano una buona conoscenza del fenomeno adottivo, principalmente grazie ai media e a numerosi contatti diretti con famiglie adottive nel vicinato e nella rete parentale. Le persone si rappresentano i genitori adottivi come coppie senza figli, benestanti e generose, motivate dal desiderio di dare una famiglia ad un bambino bisognoso. È inoltre emerso come i soggetti, in caso di mancanza di figli, ricorrerebbero in primo luogo alla fecondazione assistita e solo in secondo luogo all'adozione

    Synergistic effects of metal hydroxides and fumed nanosilica as fire retardants for polyethylene

    Get PDF
    International audienceThis work aims to study the synergistic effect of aluminum/magnesium hydroxide microfillers and organomodified fumed silica nanoparticles as flame retar-dants (FRs) for linear low-density polyethylene (LLDPE), and to select the best composition to produce a fire-resistant polyethylene-based single-polymer composite. The fillers were added to LLDPE at different concentrations , and the prepared composites were characterized to investigate the individual and combined effects of the fillers on the thermo-oxidation resistance and the fire performance , as well as the microstructural, physical, thermal and mechanical properties. Both filler types were homogeneously distributed in the matrix, with the formation of a network of silica nanoparticles at elevated load-ings. Melt flow index (MFI) tests revealed that the fluid-ity of the material was not considerably impaired upon metal hydroxide introduction, while a heavy reduction of the MFI was detected for silica contents higher than 5 wt%. FRs introduction promoted a noticeable enhancement of the thermo-oxidative stability of the materials, as shown by thermogravimetric analysis (TGA) and onset oxidation temperature (OOT) tests, and superior thermal properties were measured on the samples combining micro-and nanofillers, thus evidencing synergistic effects. Tensile tests showed that the stiffening effect due to a high content of metal hydroxide microparticles was accompanied by a decrease in the strain at break, but nanosilica at low concentration contributed to preserve the ultimate mechanical properties of the neat polymer. The fire performance of the samples with optimized compositions, evaluated through limiting oxygen index (LOI) and cone calorimetry tests, was strongly enhanced with respect to that of the neat LLDPE, and also these tests highlighted the synergistic effect between micro-and nanofillers, as well as an interesting correlation between fire parameters and viscosity

    Myelin Oligodendrocyte Glycoprotein Antibody-Associated Disease (MOGAD): A Review of Clinical and MRI Features, Diagnosis, and Management

    Get PDF
    Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is the most recently defined inflammatory demyelinating disease of the central nervous system (CNS). Over the last decade, several studies have helped delineate the characteristic clinical-MRI phenotypes of the disease, allowing distinction from aquaporin-4 (AQP4)-IgG-positive neuromyelitis optica spectrum disorder (AQP4-IgG+NMOSD) and multiple sclerosis (MS). The clinical manifestations of MOGAD are heterogeneous, ranging from isolated optic neuritis or myelitis to multifocal CNS demyelination often in the form of acute disseminated encephalomyelitis (ADEM), or cortical encephalitis. A relapsing course is observed in approximately 50% of patients. Characteristic MRI features have been described that increase the diagnostic suspicion (e.g., perineural optic nerve enhancement, spinal cord H-sign, T2-lesion resolution over time) and help discriminate from MS and AQP4+NMOSD, despite some overlap. The detection of MOG-IgG in the serum (and sometimes CSF) confirms the diagnosis in patients with compatible clinical-MRI phenotypes, but false positive results are occasionally encountered, especially with indiscriminate testing of large unselected populations. The type of cell-based assay used to evaluate for MOG-IgG (fixed vs. live) and antibody end-titer (low vs. high) can influence the likelihood of MOGAD diagnosis. International consensus diagnostic criteria for MOGAD are currently being compiled and will assist in clinical diagnosis and be useful for enrolment in clinical trials. Although randomized controlled trials are lacking, MOGAD acute attacks appear to be very responsive to high dose steroids and plasma exchange may be considered in refractory cases. Attack-prevention treatments also lack class-I data and empiric maintenance treatment is generally reserved for relapsing cases or patients with severe residual disability after the presenting attack. A variety of empiric steroid-sparing immunosuppressants can be considered and may be efficacious based on retrospective or prospective observational studies but prospective randomized placebo-controlled trials are needed to better guide treatment. In summary, this article will review our rapidly evolving understanding of MOGAD diagnosis and management

    Extracellular vesicles from adipose mesenchymal stem cells target inflamed lymph nodes in experimental autoimmune encephalomyelitis

    Get PDF
    Background aims: Adipose mesenchymal stem cells (ASCs) represent a promising therapeutic approach in inflammatory neurological disorders, including multiple sclerosis (MS). Recent lines of evidence indicate that most biological activities of ASCs are mediated by the delivery of soluble factors enclosed in extracellular vesicles (EVs). Indeed, we have previously demonstrated that small EVs derived from ASCs (ASC-EVs) ameliorate experimental autoimmune encephalomyelitis (EAE), a murine model of MS. The precise mechanisms and molecular/cellular target of EVs during EAE are still unknown. Methods: To investigate the homing of ASC-EVs, we intravenously injected small EVs loaded with ultra-small superparamagnetic iron oxide nanoparticles (USPIO) at disease onset in EAE-induced C57Bl/6J mice. Histochemical analysis and transmission electron microscopy were carried out 48 h after EV treatment. Moreover, to assess the cellular target of EVs, flow cytometry on cells extracted ex vivo from EAE mouse lymph nodes was performed. Results: Histochemical and ultrastructural analysis showed the presence of labeled EVs in lymph nodes but not in lungs and spinal cord of EAE injected mice. Moreover, we identified the cellular target of EVs in EAE lymph nodes by flow cytometry: ASC-EVs were preferentially located in macrophages, with a consistent amount also noted in dendritic cells and CD4+ T lymphocytes. Conclusions: This represents the first direct evidence of the privileged localization of ASC-EVs in draining lymph nodes of EAE after systemic injection. These data provide prominent information on the distribution, uptake and retention of ASC-EVs, which may help in the development of EV-based therapy in MS

    Automated, 3-D and Sub-Micron Accurate Ablation-Volume Determination by Inverse Molding and X-Ray Computed Tomography.

    Get PDF
    Ablation of materials in combination with element-specific analysis of the matter released is a widely used method to accurately determine a material's chemical composition. Among other methods, repetitive ablation using femto-second pulsed laser systems provides excellent spatial resolution through its incremental removal of nanometer thick layers. The method can be combined with high-resolution mass spectrometry, for example, laser ablation ionization mass spectrometry, to simultaneously analyze chemically the material released. With increasing depth of the volume ablated, however, secondary effects start to play an important role and the ablation geometry deviates substantially from the desired cylindrical shape. Consequently, primarily conical but sometimes even more complex, rather than cylindrical, craters are created. Their dimensions need to be analyzed to enable a direct correlation with the element-specific analytical signals. Here, a post-ablation analysis method is presented that combines generic polydimethylsiloxane-based molding of craters with the volumetric reconstruction of the crater's inverse using X-ray computed tomography. Automated analysis yields the full, sub-micron accurate anatomy of the craters, thereby a scalable and generic method to better understand the fundamentals underlying ablation processes applicable to a wide range of materials. Furthermore, it may serve toward a more accurate determination of heterogeneous material's composition for a variety of applications without requiring time- and labor-intensive analyses of individual craters

    Proteomics Reveals Global Regulation of Protein SUMOylation by ATM and ATR Kinases during Replication Stress

    Get PDF
    Summary: The mechanisms that protect eukaryotic DNA during the cumbersome task of replication depend on the precise coordination of several post-translational modification (PTM)-based signaling networks. Phosphorylation is a well-known regulator of the replication stress response, and recently an essential role for SUMOs (small ubiquitin-like modifiers) has also been established. Here, we investigate the global interplay between phosphorylation and SUMOylation in response to replication stress. Using SUMO and phosphoproteomic technologies, we identify thousands of regulated modification sites. We find co-regulation of central DNA damage and replication stress responders, of which the ATR-activating factor TOPBP1 is the most highly regulated. Using pharmacological inhibition of the DNA damage response kinases ATR and ATM, we find that these factors regulate global protein SUMOylation in the protein networks that protect DNA upon replication stress and fork breakage, pointing to integration between phosphorylation and SUMOylation in the cellular systems that protect DNA integrity. : Munk et al. use mass spectrometry-based proteomics to analyze the interplay between SUMOylation and phosphorylation in replication stress. They analyze changes in the SUMO and phosphoproteome after MMC and hydroxyurea treatments and find that the DNA damage response kinases ATR and ATM globally regulate SUMOylation upon replication stress and fork breakage. Keywords: Replication stress, quantitative proteomics, phosphoproteomics, SUMO, ATR, ATM, TOPBP1, MMC, kinase inhibitors, hydroxyure

    A night of sleep deprivation alters brain connectivity and affects specific executive functions

    Get PDF
    : Sleep is a fundamental physiological process necessary for efficient cognitive functioning especially in relation to memory consolidation and executive functions, such as attentional and switching abilities. The lack of sleep strongly alters the connectivity of some resting-state networks, such as default mode network and attentional network. In this study, by means of magnetoencephalography (MEG) and specific cognitive tasks, we investigated how brain topology and cognitive functioning are affected by 24 h of sleep deprivation (SD). Thirty-two young men underwent resting-state MEG recording and evaluated in letter cancellation task (LCT) and task switching (TS) before and after SD. Results showed a worsening in the accuracy and speed of execution in the LCT and a reduction of reaction times in the TS, evidencing thus a worsening of attentional but not of switching abilities. Moreover, we observed that 24 h of SD induced large-scale rearrangements in the functional network. These findings evidence that 24 h of SD is able to alter brain connectivity and selectively affects cognitive domains which are under the control of different brain networks

    Quantitative laser–matter interaction: a 3D study of UV-fs-laser ablation on single crystalline Ru(0001)

    Get PDF
    Laser ablation is nowadays an extensively applied technology to probe the chemical composition of solid materials. It allows for precise targeting of micrometer objects on and in samples, and enables chemical depth profiling with nanometer resolution. An in-depth understanding of the 3D geometry of the ablation craters is crucial for precise calibration of the depth scale in chemical depth profiles. Herein we present a comprehensive study on laser ablation processes using a Gaussian-shaped UV-femtosecond irradiation source and present how the combination of three different imaging methods (scanning electron microscopy, interferometric microscopy, and X-ray computed tomography) can provide accurate information on the crater’s shapes. Crater analysis by applying X-ray computed tomography is of considerable interest because it allows the imaging of an array of craters in one step with sub-µm accuracy and is not limited to the aspect ratio of the crater. X-ray computed tomography thereby complements the analysis of laser ablation craters. The study investigates the effect of laser pulse energy and laser burst count on a single crystal Ru(0001) sample. Single crystals ensure that there is no dependence on the grain orientations during the laser ablation process. An array of 156 craters of different dimensions ranging from <20 nm to ∼40 µm in depth were created. For each individually applied laser pulse, we measured the number of ions generated in the ablation plume with our laser ablation ionization mass spectrometer. We show to which extent the combination of these four techniques reveals valuable information on the ablation threshold, the ablation rate, and the limiting ablation depth. The latter is expected to be a consequence of decreasing irradiance upon increasing crater surface area. The ion signal generated was found to be proportional to the volume ablated up to the certain depth, which enables in-situ depth calibration during the measurement

    Improving the Cellular Uptake of Biomimetic Magnetic Nanoparticles

    Get PDF
    Magnetococcus marinus magnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nano-particles as drug nanocarriers and hyperthermia agents. In the present study we explore the enhanced BMNPs internalization following upon their encapsulation by poly (lac-tic-co-glycolic) acid (PLGA), a Food and Drug Administration (FDA) approved molecule. Inter-nalization is further optimized by the functionalization of the nanoformulation with the cell-penetrating TAT peptide (TATp). Our results evidence that cells treated with the nanofor-mulation [TAT-PLGA(BMNPs)] show up to 80% more iron internalized (after 72 h) compared to that of cells treated with BMNPs (40%), without any significant decrease in cell viability. This nanoformulation showing optimal internalization is further characterized. In particular, the present manuscript demonstrates that neither its magnetic properties nor its performance as a hyperthermia agent are significantly altered due to the encapsulation. In vitro experiments demonstrate that, following upon the application of an alternating magnetic field on U87MG cells treated with BMNPs and TAT-PLGA(BMNPs), the cytotoxic effect of BMNPs was not affected by the TAT-PLGA enveloping. Based on that, difficulties shown in previous studies related to poor cell uptake of BMNPs can be overcome by the novel nanoassembly described here
    • …
    corecore