105 research outputs found

    Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.

    Get PDF
    Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 ”g/”l [SEM 0.12], - LLLT = 0.048 ”g/”l [SEM 0.01]), IL-1ÎČ (placebo-control = 2.292 ”g/”l [SEM 0.74], - LLLT = 0.12 ”g/”l [SEM 0.03]), IL-6 (placebo-control = 3.946 ”g/”l [SEM 0.98], - LLLT = 0.854 ”g/”l [SEM 0.33]), IL-10 (placebo-control = 1.116 ”g/”l [SEM 0.22], - LLLT = 0.352 ”g/”l [SEM 0.15]), and COX-2 (placebo-control = 4.984 ”g/”l [SEM 1.18], LLLT = 1.470 ”g/”l [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy

    An experimental study of low-level laser therapy in rat Achilles tendon injury

    Get PDF
    The aim of this controlled animal study was to investigate the effect of low-level laser therapy (LLLT) administered 30 min after injury to the Achilles tendon. The study animals comprised 16 Sprague Dawley male rats divided in two groups. The right Achilles tendons were injured by blunt trauma using a mini guillotine, and were treated with LLLT or placebo LLLT 30 min later. The injury and LLLT procedures were then repeated 15 hours later on the same tendon. One group received active LLLT (λ = 904 nm, 60 mW mean output power, 0.158 W/cm2 for 50 s, energy 3 J) and the other group received placebo LLLT 23 hours after LLLT. Ultrasonographic images were taken to measure the thickness of the right and left Achilles tendons. Animals were then killed, and all Achilles tendons were tested for ultimate tensile strength (UTS). All analyses were performed by blinded observers. There was a significant increase in tendon thickness in the active LLLT group when compared with the placebo group (p < 0.05) and there were no significant differences between the placebo and uninjured left tendons. There were no significant differences in UTS between laser-treated, placebo-treated and uninjured tendons. Laser irradiation of the Achilles tendon at 0.158 W/cm2 for 50 s (3 J) administered within the first 30 min after blunt trauma, and repeated after 15 h, appears to lead to edema of the tendon measured 23 hours after LLLT. The guillotine blunt trauma model seems suitable for inflicting tendon injury and measuring the effects of treatment on edema by ultrasonography and UTS. More studies are needed to further refine this model

    Application and modeling of an online distillation method to reduce krypton and argon in XENON1T

    Get PDF

    Emission of single and few electrons in XENON1T and limits on light dark matter

    Get PDF
    Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates <30 events/(electron×kg×day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons

    An approximate likelihood for nuclear recoil searches with XENON1T data

    Get PDF
    The XENON collaboration has published stringent limits on specific dark matter – nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 t-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 t-year exposure

    Effective Field Theory and Inelastic Dark Matter Results from XENON1T

    Get PDF
    In this work, we expand on the XENON1T nuclear recoil searches to study theindividual signals of dark matter interactions from operators up todimension-eight in a Chiral Effective Field Theory (ChEFT) and a model ofinelastic dark matter (iDM). We analyze data from two science runs of theXENON1T detector totaling 1\,tonne×\timesyear exposure. For these analyses, weextended the region of interest from [4.9, 40.9] \,keVNR_{\text{NR}} to [4.9,54.4] \,keVNR_{\text{NR}} to enhance our sensitivity for signals that peak atnonzero energies. We show that the data is consistent with the background-onlyhypothesis, with a small background over-fluctuation observed peaking between20 and 50 \,keVNR_{\text{NR}}, resulting in a maximum local discoverysignificance of 1.7\,σ\sigma for the Vector⊗\otimesVectorstrange_{\text{strange}}(VVsVV_s) ChEFT channel for a dark matter particle of 70 \,GeV/c2^2, and1.8 σ1.8\,\sigma for an iDM particle of 50 \,GeV/c2^2 with a mass splitting of100 \,keV/c2^2. For each model, we report 90\,\% confidence level (CL) upperlimits. We also report upper limits on three benchmark models of dark matterinteraction using ChEFT where we investigate the effect of isospin-breakinginteractions. We observe rate-driven cancellations in regions of theisospin-breaking couplings, leading to up to 6 orders of magnitude weaker upperlimits with respect to the isospin-conserving case.<br

    Search for Coherent Elastic Scattering of Solar ⁞B Neutrinos in the XENON1T Dark Matter Experiment

    Get PDF
    We report on a search for nuclear recoil signals from solar 8B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 to 1.6  keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant 8B neutrinolike excess is found in an exposure of 0.6  t×y. For the first time, we use the nondetection of solar neutrinos to constrain the light yield from 1–2 keV nuclear recoils in liquid xenon, as well as nonstandard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 and 11  GeV c−2 by as much as an order of magnitude

    Adenosine and oxygen/glucose deprivation in the brain

    Get PDF

    Search for inelastic scattering of WIMP dark matter in XENON1T

    Get PDF
    We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off 129Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV deexcitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.83 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2σ. A profile-likelihood ratio analysis is used to set upper limits on the cross section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100  GeV/c2, with the strongest upper limit of 3.3×10−39  cm2 for 130  GeV/c2 WIMPs at 90% confidence level
    • 

    corecore