83 research outputs found

    Navigating the manyverse of skin conductance response quantification approaches - A direct comparison of trough-to-peak, baseline correction, and model-based approaches in Ledalab and PsPM

    Get PDF
    Raw data are typically required to be processed to be ready for statistical analyses, and processing pipelines are often characterized by substantial heterogeneity. Here, we applied seven different approaches (trough-to-peak scoring by two different raters, script-based baseline correction, Ledalab as well as four different models implemented in the software PsPM) to two fear conditioning data sets. Selection of the approaches included was guided by a systematic literature search by using fear conditioning research as a case example. Our approach can be viewed as a set of robustness analyses (i.e., same data subjected to different processing pipelines) aiming to investigate if and to what extent these different quantification approaches yield comparable results given the same data. To our knowledge, no formal framework for the evaluation of robustness analyses exists to date, but we may borrow some criteria from a framework suggested for the evaluation of "replicability" in general. Our results from seven different SCR quantification approaches applied to two data sets with different paradigms suggest that there may be no single approach that consistently yields larger effect sizes and could be universally considered "best." Yet, at least some of the approaches employed show consistent effect sizes within each data set indicating comparability. Finally, we highlight substantial heterogeneity also within most quantification approaches and discuss implications and potential remedies

    The COMTval158met polymorphism is associated with symptom relief during exposure-based cognitive-behavioral treatment in panic disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cognitive behavioral therapy (CBT) represents a learning process leading to symptom relief and resulting in long-term changes in behavior. CBT for panic disorder is based on exposure and exposure-based processes can be studied in the laboratory as extinction of experimentally acquired fear responses. We have recently demonstrated that the ability to extinguish learned fear responses is associated with a functional genetic polymorphism (COMTval158met) in the <it>COMT </it>gene and this study was aimed at transferring the experimental results on the COMTval158met polymorphism on extinction into a clinical setting.</p> <p>Methods</p> <p>We tested a possible effect of the COMTval158met polymorphism on the efficacy of CBT, in particular exposure-based treatment modules, in a sample of 69 panic disorder patients.</p> <p>Results</p> <p>We present evidence that panic patients with the COMTval158met met/met genotype may profit less from (exposure-based) CBT treatment methods as compared to patients carrying at least one val-allele. No association was found with the 5-HTTLPR/rs25531 genotypes which is presented as additional material.</p> <p>Conclusions</p> <p>We were thus able to transfer findings on the effect of the COMTval158met polymorphism from an experimental extinction study obtained using healthy subjects to a clinical setting. Furthermore patients carrying a COMT val-allele tend to report more anxiety and more depression symptoms as compared to those with the met/met genotype. Limitations of the study as well as possible clinical implications are discussed.</p> <p>Trial registration</p> <p>Clinical Trial Registry name: Internet-Versus Group-Administered Cognitive Behavior Therapy for Panic Disorder (IP2). Registration Identification number: NCT00845260, <url>http://www.clinicaltrials.gov/ct2/show/NCT00845260</url></p

    Genetic variation in the serotonin transporter gene (5-HTTLPR, rs25531) influences the analgesic response to the short acting opioid Remifentanil in humans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is evidence from animal studies that serotonin (5-HT) can influence the antinociceptive effects of opioids at the spinal cord level. Therefore, there could be an influence of genetic polymorphisms in the serotonin system on individual variability in response to opioid treatment of pain. The serotonin transporter (5-HTT) is a key regulator of serotonin metabolism and availability and its gene harbors several known polymorphisms that are known to affect 5-HTT expression (e.g. 5-HTTLPR, rs25531). The aim of this study was to investigate if the triallelic 5-HTTLPR influences pain sensitivity or the analgesic effect of opioids in humans. 43 healthy volunteers (12 men, 31 women, mean age 26 years) underwent heat pain stimulations before and after intravenous injection of Remifentanil; a rapid and potent opioid drug acting on μ-type receptors. Subjects rated their perceived pain on a visual analogue scale (VAS). All participants were genotyped for the 5-HTTLPR and the rs25531 polymorphism. We recruited by advertising, with no history of drug abuse, chronic pain or psychiatric disorders.</p> <p>Results</p> <p>At baseline, there was no difference in pain ratings for the different triallelic 5-HTTLPR genotype groups. However, the opiod drug had a differential analgesic effect depending on the triallelic 5-HTTLPR genotype. Remifentanil had a significantly better analgesic effect in individuals with a genotype coding for low 5-HTT expression (S<sub>A</sub>/S<sub>A </sub>and S<sub>A</sub>/L<sub>G</sub>) as compared to those with high expression(L<sub>A</sub>/L<sub>A</sub>), p < 0.02. The analgesic effect for the three different genotype groups was linear to degree of 5-HTT expression.</p> <p>Conclusion</p> <p>This is the first report showing an influence of the triallelic 5-HTTLPR on pain sensitivity or the analgesic effect of opioids in humans. Previously the 5-HTTLPR s-allele has been associated with higher risk of developing chronic pain conditions but in this study we show that the genotype coding for low 5-HTT expression is associated with a better analgesic effect of an opioid. The s-allele has been associated with downregulation of 5-HT1 receptors and we suggest that individuals with a desensitization of 5-HT1 receptors have an increased analgesic response to opioids during acute pain stimuli, but may still be at increased risk of developing chronic pain conditions.</p

    Enhancing precision in human neuroscience

    Get PDF
    Human neuroscience has always been pushing the boundary of what is measurable. During the last decade, concerns about statistical power and replicability - in science in general, but also specifically in human neuroscience - have fueled an extensive debate. One important insight from this discourse is the need for larger samples, which naturally increases statistical power. An alternative is to increase the precision of measurements, which is the focus of this review. This option is often overlooked, even though statistical power benefits from increasing precision as much as from increasing sample size. Nonetheless, precision has always been at the heart of good scientific practice in human neuroscience, with researchers relying on lab traditions or rules of thumb to ensure sufficient precision for their studies. In this review, we encourage a more systematic approach to precision. We start by introducing measurement precision and its importance for well-powered studies in human neuroscience. Then, determinants for precision in a range of neuroscientific methods (MRI, M/EEG, EDA, Eye-Tracking, and Endocrinology) are elaborated. We end by discussing how a more systematic evaluation of precision and the application of respective insights can lead to an increase in reproducibility in human neuroscience

    Making translation work: Harmonizing cross-species methodology in the behavioural neuroscience of Pavlovian fear conditioning

    Get PDF
    Translational neuroscience bridges insights from specific mechanisms in rodents to complex functions in humans and is key to advance our general understanding of central nervous function. A prime example of translational research is the study of cross-species mechanisms that underlie responding to learned threats, by employing Pavlovian fear conditioning protocols in rodents and humans. Hitherto, evidence for (and critique of) these cross-species comparisons in fear conditioning research was based on theoretical viewpoints. Here, we provide a perspective to substantiate these theoretical concepts with empirical considerations of cross-species methodology. This meta-research perspective is expected to foster cross-species comparability and reproducibility to ultimately facilitate successful transfer of results from basic science into clinical applications

    GLRB allelic variation associated with agoraphobic cognitions, increased startle response and fear network activation : a potential neurogenetic pathway to panic disorder

    Get PDF
    The molecular genetics of panic disorder (PD) with and without agoraphobia (AG) are still largely unknown and progress is hampered by small sample sizes. We therefore performed a genome-wide association study with a dimensional, PD/AG - related anxiety phenotype based on the Agoraphobia Cognition Questionnaire (ACQ) in a sample of 1,370 healthy German volunteers of the CRC TRR58 MEGA study wave 1. A genome-wide significant association was found between ACQ and single non-coding nucleotide variants of the GLRB gene (rs78726293, p=3.3x10-8; rs191260602, p=3.9x10-8). We followed up on this finding in a larger dimensional ACQ sample (N=2,547) and in independent samples with a dichotomous AG phenotype based on the Symptoms Checklist (SCL-90; N=3,845) and a case control sample with the categorical phenotype PD/AG (Ncombined =1,012) obtaining highly significant p-values also for GLRB single nucleotide variants rs17035816 (p=3.8x10-4) and rs7688285 (p=7.6x10-5). GLRB gene expression was found to be modulated by rs7688285 in brain tissue as well as cell culture. Analyses of intermediate PD/AG phenotypes demonstrated increased startle reflex and increased fear network as well as general sensory activation by GLRB risk gene variants rs78726293, rs191260602, rs17035816 and rs7688285. Partial Glrb knockout-mice demonstrated an agoraphobic phenotype. In conjunction withthe clinical observation that rare coding GLRB gene mutations are associated with the neurological disorder hyperekplexia characterized by a generalized startle reaction and agoraphobic behavior, our data provide evidence that non-coding, though functional GLRB gene polymorphisms may predispose to PD by increasing startle response and agoraphobic cognitions.PostprintPeer reviewe

    Perception of Thermal Pain and the Thermal Grill Illusion Is Associated with Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    AIM: The main aim of this study was to assess if the perception of thermal pain thresholds is associated with genetically inferred levels of expression of the 5-HT transporter (5-HTT). Additionally, the perception of the so-called thermal grill illusion (TGI) was assessed. Forty-four healthy individuals (27 females, 17 males) were selected a-priori based on their 5-HTTLPR/rs25531 ('tri-allelic 5-HTTLPR') genotype, with inferred high or low 5-HTT expression. Thresholds for heat- and cold-pain were determined along with the sensory and affective dimensions of the TGI. RESULTS: Thresholds to heat- and cold-pain correlated strongly (rho  = -0.58, p<0.001). Individuals in the low 5-HTT-expressing group were significantly less sensitive to heat-pain (p = 0.02) and cold-pain (p = 0.03), compared to the high-expressing group. A significant gender-by-genotype interaction also emerged for cold-pain perception (p = 0.02); low 5-HTT-expressing females were less sensitive. The TGI was rated as significantly more unpleasant (affective-motivational dimension) than painful (sensory-discriminatory dimension), (p<0.001). Females in the low 5-HTT expressing group rated the TGI as significantly less unpleasant than high 5-HTT expressing females (p<0.05), with no such differences among men. CONCLUSION/SIGNIFICANCE: We demonstrate an association between inferred low 5-HTT expression and elevated thresholds to thermal pain in healthy non-depressed individuals. Despite the fact that reduced 5-HTT expression is a risk factor for chronic pain we found it to be related to hypoalgesia for threshold thermal pain. Low 5-HTT expression is, however, also a risk factor for depression where thermal insensitivity is often seen. Our results may thus contribute to a better understanding of the molecular underpinnings of such paradoxical hypoalgesia. The results point to a differential regulation of thermoafferent-information along the neuraxis on the basis of 5-HTT expression and gender. The TGI, suggested to rely on the central integration of thermoafferent-information, may prove a valuable tool in probing the affective-motivational dimension of these putative mechanisms

    Conditioned Pain Modulation Is Associated with Common Polymorphisms in the Serotonin Transporter Gene

    Get PDF
    BACKGROUND: Variation in the serotonin transporter (5-HTT) gene (SLC6A4) has been shown to influence a wide range of affective processes. Low 5-HTT gene-expression has also been suggested to increase the risk of chronic pain. Conditioned pain modulation (CPM)--i.e. 'pain inhibits pain'--is impaired in chronic pain states and, reciprocally, aberrations of CPM may predict the development of chronic pain. Therefore we hypothesized that a common variation in the SLC6A4 is associated with inter-individual variation in CPM. Forty-five healthy subjects recruited on the basis of tri-allelic 5-HTTLPR genotype, with inferred high or low 5-HTT-expression, were included in a double-blind study. A submaximal-effort tourniquet test was used to provide a standardized degree of conditioning ischemic pain. Individualized noxious heat and pressure pain thresholds (PPTs) were used as subjective test-modalities and the nociceptive flexion reflex (NFR) was used to provide an objective neurophysiological window into spinal processing. RESULTS: The low, as compared to the high, 5-HTT-expressing group exhibited significantly reduced CPM-mediated pain inhibition for PPTs (p = 0.02) and heat-pain (p = 0.02). The CPM-mediated inhibition of the NFR, gauged by increases in NFR-threshold, did not differ significantly between groups (p = 0.75). Inhibition of PPTs and heat-pain were correlated (Spearman's rho = 0.35, p = 0.02), whereas the NFR-threshold increase was not significantly correlated with degree of inhibition of these subjectively reported modalities. CONCLUSIONS: Our results demonstrate the involvement of the tri-allelic 5-HTTLPR genotype in explaining clinically relevant inter-individual differences in pain perception and regulation. Our results also illustrate that shifts in NFR-thresholds do not necessarily correlate to the modulation of experienced pain. We discuss various possible mechanisms underlying these findings and suggest a role of regulation of 5-HT receptors along the neuraxis as a function of differential 5-HTT-expression
    corecore