130 research outputs found

    Alcohol beverage control, privatization and the geographic distribution of alcohol outlets

    Get PDF
    BACKGROUND: With Pennsylvania currently considering a move away from an Alcohol Beverage Control state to a privatized alcohol distribution system, this study uses a spatial analytical approach to examine potential impacts of privatization on the number and spatial distribution of alcohol outlets in the city of Philadelphia over a long time horizon. METHODS: A suite of geospatial data were acquired for Philadelphia, including 1,964 alcohol outlet locations, 569,928 land parcels, and school, church, hospital, park and playground locations. These data were used as inputs for exploratory spatial analysis to estimate the expected number of outlets that would eventually operate in Philadelphia. Constraints included proximity restrictions (based on current ordinances regulating outlet distribution) of at least 200 feet between alcohol outlets and at least 300 feet between outlets and schools, churches, hospitals, parks and playgrounds. RESULTS: Findings suggest that current state policies on alcohol outlet distributions in Philadelphia are loosely enforced, with many areas exhibiting extremely high spatial densities of outlets that violate existing proximity restrictions. The spatial model indicates that an additional 1,115 outlets could open in Philadelphia if privatization was to occur and current proximity ordinances were maintained. CONCLUSIONS: The study reveals that spatial analytical approaches can function as an excellent tool for contingency-based “what-if” analysis, providing an objective snapshot of potential policy outcomes prior to implementation. In this case, the likely outcome is a tremendous increase in alcohol outlets in Philadelphia, with concomitant negative health, crime and quality of life outcomes that accompany such an increase

    A blind ATCA HI survey of the Fornax galaxy cluster:Properties of the HI detections

    Get PDF
    We present the first interferometric blind HI survey of the Fornax galaxy cluster, which covers an area of 15 deg2 out to the cluster virial radius. The survey has a spatial and velocity resolution of 67″ × 95″(∌6 × 9 kpc at the Fornax cluster distance of 20 Mpc) and 6.6 km s−1 and a 3σ sensitivity of NHI ∌ 2 × 1019 cm−2 and MHI ∌ 2 × 107 M⊙, respectively. We detect 16 galaxies out of roughly 200 spectroscopically confirmed Fornax cluster members. The detections cover about three orders of magnitude in HI mass, from 8 × 106 to 1.5 × 1010 M⊙. They avoid the central, virialised region of the cluster both on the sky and in projected phase-space, showing that they are recent arrivals and that, in Fornax, HI is lost within a crossing time, ∌2 Gyr. Half of these galaxies exhibit a disturbed HI morphology, including several cases of asymmetries, tails, offsets between HI and optical centres, and a case of a truncated HI disc. This suggests that these recent arrivals have been interacting with other galaxies, the large-scale potential or the intergalactic medium, within or on their way to Fornax. As a whole, our Fornax HI detections are HI-poorer and form stars at a lower rate than non-cluster galaxies in the same M⋆ range. This is particularly evident at M⋆  â‰Č  109 M⊙, indicating that low mass galaxies are more strongly affected throughout their infall towards the cluster. The MHI/M⋆ ratio of Fornax galaxies is comparable to that in the Virgo cluster. At fixed M⋆, our HI detections follow the non-cluster relation between MHI and the star formation rate, and we argue that this implies that thus far they have lost their HI on a timescale ≳1−2 Gyr. Deeper inside the cluster HI removal is likely to proceed faster, as confirmed by a population of HI-undetected but H2-detected star-forming galaxies. Overall, based on ALMA data, we find a large scatter in H2-to-HI mass ratio, with several galaxies showing an unusually high ratio that is probably caused by faster HI removal. Finally, we identify an HI-rich subgroup of possible interacting galaxies dominated by NGC 1365, where pre-processing is likely to have taken place

    Exploring the potential of using simulation games for engaging with sheep farmers about lameness recognition.

    Get PDF
    This is the final version. Available from Frontiers Media via the DOI in this record. Data availability statement: The raw data for this study is deposited at Open Science Framework (https://osf.io/a6qu4/). This data can be used alongside the R/R Markdown code deposited at the lead author’s GitHub repository for this study (https://github.com/befriendabacterium/ lamenessgame) to reproduce the quantitative analysis of participant recall scores in the game, and the manuscript itself. All data and code (including its outputs) are archived at Zenodo (https://doi.org/ 10.5281/zenodo.7605244). A copy of the game used in the study is also archived in a separate Zenodo repository (https://doi.org/10. 5281/zenodo.7612059), which can be downloaded to play the game locally/offline.INTRODUCTION: Computer simulation games are increasingly being used in agriculture as a promising tool to study, support and influence real-life farming practices. We explored the potential of using simulation games to engage with sheep farmers on the ongoing challenge of reducing lameness. Working with UK stakeholders, we developed a game in which players are challenged with identifying all the lame sheep in a simulated flock. Here, we evaluate the game's potential to act as a tool to help assess, train and understand farmers' ability to recognize the early signs of lameness. METHODS: Participants in the UK were invited to play the game in an online study, sharing with us their in-game scores alongside information relating to their real-life farming experience, how they played the game, and feedback on the game. Mixed methods were used to analyze this information in order to evaluate the game. Quantitative analyses consisted of linear modeling to test for statistical relationships between participants' in-game recall (% of the total number of lame sheep that were marked as lame), and the additional information they provided. Qualitative analyses of participants' feedback on the game consisted of thematic analysis and a Likert Scale questionnaire to contextualize the quantitative results and identify additional insights from the study. RESULTS: Quantitative analyses identified no relationships between participants' (n = 63) recall scores and their real life farming experience, or the lameness signs they looked for when playing the game. The only relationship identified was a relationship between participants' recall score and time spent playing the game. Qualitative analyses identified that participants did not find the game sufficiently realistic or engaging, though several enjoyed playing it and saw potential for future development. Qualitative analyses also identified several interesting and less-expected insights about real-life lameness recognition practices that participants shared after playing the game. DISCUSSION: Simulation games have potential as a tool in livestock husbandry education and research, but achieving the desired levels of realism and/or engagingness may be an obstacle to realizing this. Future research should explore this potential further, aided by larger budgets and closer collaboration with farmers, stockpeople, and veterinarians.GW4 Crucicle Seed FundingCenter for Artificial Intelligence, Robotics and Human-Machine Systems (IROHMS) operatio

    The MeerKAT Fornax Survey -- II. The rapid removal of HI from dwarf galaxies in the Fornax cluster

    Get PDF
    We present MeerKAT Fornax Survey atomic hydrogen (HI) observations of the dwarf galaxies located in the central ~2.5 x 4 deg2^2 of the Fornax galaxy cluster. The HI images presented in this work have a 3σ3\sigma column density sensitivity between 2.7 and 50 x 1018^{18} cm−2^{-2} over 25 km s−1^{-1} for spatial resolution between 4 and 1 kpc. We are able to detect an impressive MHI = 5 x 105^{5} Msun 3σ\sigma point source with a line width of 50 km s−1^{-1} at a distance of 20 Mpc. We detect HI in 17 out of the 304 dwarfs in our field -- 14 out of the 36 late type dwarfs (LTDs), and 3 of the 268 early type dwarfs (ETDs). The HI-detected LTDs have likely just joined the cluster and are on their first infall as they are located at large clustocentric radii, with comparable MHI and mean stellar surface brightness at fixed luminosity as blue, star-forming LTDs in the field. The HI-detected ETDs have likely been in the cluster longer than the LTDs and acquired their HI through a recent merger or accretion from nearby HI. Eight of the HI-detected LTDs host irregular or asymmetric HI emission and disturbed or lopsided stellar emission. There are two clear cases of ram-pressure shaping the HI, with the LTDs displaying compressed HI on the side closest to the cluster centre and a one-sided, starless tail pointing away from the cluster centre. The HI-detected dwarfs avoid the most massive potentials, consistent with massive galaxies playing an active role in the removal of HI. We create a simple toy model to quantify the timescale of HI stripping in the cluster. We find that a MHI = 108^{8} Msun dwarf will be stripped in ~ 240 Myr. The model is consistent with our observations, where low mass LTDs are directly stripped of their HI from a single encounter and more massive LTDs can harbour a disturbed HI morphology due to longer times or multiple encounters being required to fully strip their HI.Comment: Accepted in Astronomy & Astrophysics. 21 pages, 10 figures. Data available at the MeerKAT Fornax Survey website https://sites.google.com/inaf.it/meerkatfornaxsurve

    Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres

    Full text link
    [EN] Hydrogenated amorphous silicon colloids of low surface area (<5 m(2)/g) are shown to exhibit complete in-vitro biodegradation into orthosilicic acid within 10-15 days at 37 degrees C. When converted into polycrystalline silicon colloids, by high temperature annealing in an inert atmosphere, microparticle solubility is dramatically reduced. The data suggests that amorphous silicon does not require nanoscale porosification for full in-vivo biodegradability. This has significant implications for using a-Si:H coatings for medical implants in general, and orthopedic implants in particular. The high sphericity and biodegradability of submicron particles may also confer advantages with regards to contrast agents for medical imaging.This work has been partially supported by the Spanish CICyT projects, FIS2009-07812, Consolider CSD2007-046, MAT2009-010350 and PROMETEO/2010/043.Shabir, Q.; Pokale, A.; Loni, A.; Johnson, DR.; Canham, L.; Fenollosa Esteve, R.; Tymczenko, MK.... (2011). Medically Biodegradable Hydrogenated Amorphous Silicon Microspheres. Silicon. 3(4):173-176. https://doi.org/10.1007/s12633-011-9097-4S17317634Salonen J, Kaukonen AM, Hirvonen J, Lehto VP (2008) J Pharmaceutics 97:632–53Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Adv Drug Deliv Rev 60:1266–77O’Farrell N, Houlton A, Horrocks BR (2006) Int J Nanomedicine 1:451–72Canham LT (1995) Adv Mater 7:1037, PCT patent WO 97/06101,1999Park JH, Gui L, Malzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Nature Mater 8:331–6Cullis AG, Canham LT, Calcott PDJ (1997) J Appl Phys 82:909–66Canham LT, Reeves CR (1996) Mat Res Soc Symp 414:189–90Edell DJ, Toi VV, McNeil VM, Clark LD (1992) IEEE Trans Biomed Eng 39:635–43Fenollosa R, Meseguer F, Tymczenko M (2008) Adv Mater 20:95Fenollosa R, Meseguer F, Tymczenko M, Spanish Patent P200701681, 2007Pell LE, Schricker AD, Mikulec FV, Korgel BA (2004) Langmuir 20:6546XifrĂ©-Perez E, Fenollosa R, Meseguer F (2011) Opt Express 19:3455–63Fenollosa R, Ramiro-Manzano F, Tymczenko M, Meseguer F (2010) J Mater Chem 20:5210XifrĂ©-PĂ©rez E, Domenech JD, Fenollosa R, Muñoz P, Capmany J, Meseguer F (2011) Opt Express 19–4:3185–92Rodriguez I, Fenollosa R, Meseguer F, Cosmetics & Toiletries 2010;42–49Ramiro-Manzano F, Fenollosa R, XifrĂ©-PĂ©rez E, GarĂ­n M, Meseguer F (2011) Adv Mater 23:3022–3025. doi: 10.1002/adma.201100986Iler RK (1979) Chemistry of silica: solubility, polymerization, colloid & surface properties & biochemistry. Wiley, New YorkTanaka K, Maruyama E, Shimado T, Okamoto H (1999) Amorphous silicon. Wiley, New York, NYPatterson AL (1939) Phys Rev 56:978–82Canham LT, Reeves CL, King DO, Branfield PJ, Gabb JG, Ward MC (1996) Adv Mater 8:850–2Iler RK In: Chemistry of silica: solubility, polymerization, colloid & surface properties &Biochemistry. Wiley, New York, NYFinnie KS, Waller DJ, Perret FL, Krause-Heuer AM, Lin HQ, Hanna JV, Barbe CJ (2009) J Sol-Gel Technol 49:12–8Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD (1998) J Am Chem Soc 120:6024–36Fan D, Akkaraju GR, Couch EF, Canham LT, Coffer JL (2010) Nanoscale 1:354–61Tasciotti E, Godin B, Martinez JO, Chiappini C, Bhavane R, Liu X, Ferrari M (2011) Mol Imaging 10:56–
    • 

    corecore