2,211 research outputs found

    Scientific societal meetings as opportunities for science eduation in developing countries

    Get PDF
    Brazilian Scientific productivity presented a remarkable growth during the last two decades, as inferred by the number of articles published by Brazilian authors. The number of Brazilian secondary students also grew sharply. Together, those factors lead to a scenario in which there is an increase science produced locally, a great demand for information but a paucity of resources to make it available for the youth. We have evaluated by using quantitative and qualitative approaches the potential of societal meetings as opportunities for science education. Students acquire scientific knowledge and also autonomously develop consistent strategies for choosing and attending activities to maximize their learning. Those results suggest that scientific meetings may represent an underestimated potential for science education in developing countries

    Thermal States in Conformal QFT. II

    Get PDF
    We continue the analysis of the set of locally normal KMS states w.r.t. the translation group for a local conformal net A of von Neumann algebras on the real line. In the first part we have proved the uniqueness of KMS state on every completely rational net. In this second part, we exhibit several (non-rational) conformal nets which admit continuously many primary KMS states. We give a complete classification of the KMS states on the U(1)-current net and on the Virasoro net Vir_1 with the central charge c=1, whilst for the Virasoro net Vir_c with c>1 we exhibit a (possibly incomplete) list of continuously many primary KMS states. To this end, we provide a variation of the Araki-Haag-Kastler-Takesaki theorem within the locally normal system framework: if there is an inclusion of split nets A in B and A is the fixed point of B w.r.t. a compact gauge group, then any locally normal, primary KMS state on A extends to a locally normal, primary state on B, KMS w.r.t. a perturbed translation. Concerning the non-local case, we show that the free Fermi model admits a unique KMS state.Comment: 36 pages, no figure. Dedicated to Rudolf Haag on the occasion of his 90th birthday. The final version is available under Open Access. This paper contains corrections to the Araki-Haag-Kaster-Takesaki theorem (and to a proof of the same theorem in the book by Bratteli-Robinson). v3: a reference correcte

    Increasing the Strain Resistance of Si/SiO2_2 Interfaces for Flexible Electronics

    Get PDF
    Understanding the changes that occur in the micro-mechanical properties of semiconductor materials is of utmost importance for the design of new flexible electronic devices, especially to control the properties of newly designed materials. In this work, we present the design, fabrication, and application of a novel tensile-testing device coupled to FTIR measurements that enables in situ atomic investigations of samples under uniaxial tensile load. The device allows for mechanical studies of rectangular samples with dimensions of 30 mm × 10 mm × 0.5 mm. By recording the alternation in dipole moments, the investigation of fracture mechanisms becomes feasible. Our results show that thermally treated SiO2_2 on silicon wafers has a higher strain resistance and breaking force than the SiO2_2 native oxide. The FTIR spectra of the samples during the unloading step indicate that for the native oxide sample, the fracture happened following the propagation of cracks from the surface into the silicon wafer. On the contrary, for the thermally treated samples, the crack growth starts from the deepest region of the oxide and propagates along the interface due to the change in the interface properties and redistribution of the applied stress. Finally, density functional theory calculations of model surfaces were conducted in order to unravel the differences in optic and electronic properties of the interfaces with and without applied stress

    Testing the EPIC Richards submodel for simulating soil water dynamics under different bottom boundary conditions

    Get PDF
    AbstractMost biogeochemical models simulate water dynamics using the tipping bucket approach, which has been often found to be too simplistic to represent vadose zone dynamics adequately under shallow groundwater conditions. Recently, a solution to the Richards equation using the Mualem–van Genuchten model (Rich‐vGM) has been added into the EPIC (Environmental Policy Integrated Climate) model to address this shortfall. Its performance was tested using lysimeters operating under free drainage (FD) and at a shallow water table (60‐ [WT60] and 120‐cm depth [WT120]). Model accuracy was also compared with the upgraded tipping bucket‐based method implemented into EPIC (the variable saturation hydraulic conductivity method [VSHC]). Soil water content (SWC) data were split into calibration and validation subsets. Model evaluation also included annual evapotranspiration (ET), percolation (PRK), and upward water movements to assess underlying soil water balance factors. The submodels provided accurate and similar results upon comparison with SWC measures under FD (Nash–Sutcliffe coefficient [NSE] = 0.26 and 0.61 using VSHC and Rich‐vGM, respectively). The Rich‐vGM model accurately reproduced observed SWC and ET (e.g., NSE = 0.70 and percentage bias [PBIAS] = −3.7% for WT120, respectively) although it slightly overestimated PRK (PBIAS = 47.8%, on average). Instead, VSHC proved unable to correctly simulate shallow groundwater conditions (e.g., NSE = −1.85 for WT60 SWC). Under shallow groundwater conditions, the Rich‐vGM method is recommended, despite the additional data required and the need to define the bottom boundary conditions according to water table fluctuations. In conclusion, the Richards solver introduced and tested in EPIC improved the model's ability to represent complex biophysical and biogeochemical processes in terrestrial ecosystems associated with the hydrological balance

    Representations of Conformal Nets, Universal C*-Algebras and K-Theory

    Full text link
    We study the representation theory of a conformal net A on the circle from a K-theoretical point of view using its universal C*-algebra C*(A). We prove that if A satisfies the split property then, for every representation \pi of A with finite statistical dimension, \pi(C*(A)) is weakly closed and hence a finite direct sum of type I_\infty factors. We define the more manageable locally normal universal C*-algebra C*_ln(A) as the quotient of C*(A) by its largest ideal vanishing in all locally normal representations and we investigate its structure. In particular, if A is completely rational with n sectors, then C*_ln(A) is a direct sum of n type I_\infty factors. Its ideal K_A of compact operators has nontrivial K-theory, and we prove that the DHR endomorphisms of C*(A) with finite statistical dimension act on K_A, giving rise to an action of the fusion semiring of DHR sectors on K_0(K_A)$. Moreover, we show that this action corresponds to the regular representation of the associated fusion algebra.Comment: v2: we added some comments in the introduction and new references. v3: new authors' addresses, minor corrections. To appear in Commun. Math. Phys. v4: minor corrections, updated reference

    Nuclearity and Thermal States in Conformal Field Theory

    Full text link
    We introduce a new type of spectral density condition, that we call L^2-nuclearity. One formulation concerns lowest weight unitary representations of SL(2,R) and turns out to be equivalent to the existence of characters. A second formulation concerns inclusions of local observable von Neumann algebras in Quantum Field Theory. We show the two formulations to agree in chiral Conformal QFT and, starting from the trace class condition for the semigroup generated by the conformal Hamiltonian L_0, we infer and naturally estimate the Buchholz-Wichmann nuclearity condition and the (distal) split property. As a corollary, if L_0 is log-elliptic, the Buchholz-Junglas set up is realized and so there exists a beta-KMS state for the translation dynamics on the net of C*-algebras for every inverse temperature beta>0. We include further discussions on higher dimensional spacetimes. In particular, we verify that L^2-nuclearity is satisfied for the scalar, massless Klein-Gordon field.Comment: 37 pages, minor correction

    The role of counter-ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown onto a substrate

    Get PDF
    In this contribution, we present an experimental and theoretical investigation of the role of counter-ions in the crystal morphology, surface structure, and photocatalytic activity of hierarchical ZnO nanostructures. The effect of zinc precursor (nitrate, acetate and, sulfate) along the synthesis of ZnO nanostructures grown directly onto a substrate by means of a simple hydrothermal method was analyzed in detail. Scanning electron microscopy images showed a preferential growth of ZnO nanostructures along the c-axis, with a slight reduction in the orientation depending on the choice of the Zn source. Theoretical calculations based on the Wulff theory allowed us to better understand the morphological changes and directly relate the photocatalytic performance at the different exposed surfaces of the as-observed crystal shapes. Our results showed that photocatalytic activities in the discoloration of organic dyes became superior for hierarchical ZnO nanostructures obtained from zinc nitrate. This finding was explained by X-ray photoelectron and photoluminescence spectroscopies, which revealed that in addition to, the attached counter-ions and the abundance of carboxylate groups and organic residuals on ZnO surfaces, the presence of surface defects are determinant to enhance the photocatalytic performance of the material

    Quantum chemical topological analysis of hydrogen bonding in HX…HX and CH3X…HX dimers (X = Br, Cl, F)

    Get PDF
    We present a systematic investigation of the nature and strength of the hydrogen bonding in HX···HX and CH3X…HX (X = Br, Cl and F) dimers using ab initio MP2/aug-cc-pVTZ calculations in the framework of the quantum theory of atoms in molecules (QTAIM) and electron localisation functions (ELFs) methods. The electron density of the complexes has been characterised, and the hydrogen bonding energy, as well as the QTAIM and ELF parameters, is consistent, providing deep insight into the origin of the hydrogen bonding in these complexes. It was found that in both linear and angular HX…HX and CH3X…HX dimers, F atoms form stronger HB than Br and Cl, but they need short (∼2 Å) X…HX contacts.The authors are grateful to FAPESP and FAPEMIG for financially supporting this research and for a scholarship (to R.A.C.), to CAPES for the scholarships (to F.A.L. and R.T.S.) and to CNPq for the fellowships (to T.C.R., M.P.F., E.F.F.C. and R.R.). J.A. also thanks Universitat Jaume I-Fundacio´n Bancaixa (Project P1.1B2010-10), Generalitat Valenciana for Prometeo/2009/053 project, Ministerio de Ciencia e Innovacio´n for project CTQ2009-14541-C02 and Programa de Cooperacio´n Cientı´fica con Iberoamerica (Brazil), Ministerio de Educacio´n (PHB2009-0065-PC)
    corecore