93 research outputs found
An uncertainty principle for star formation -- III. The characteristic emission time-scales of star formation rate tracers
We recently presented a new statistical method to constrain the physics of
star formation and feedback on the cloud scale by reconstructing the underlying
evolutionary timeline. However, by itself this new method only recovers the
relative durations of different evolutionary phases. To enable observational
applications, it therefore requires knowledge of an absolute 'reference
time-scale' to convert relative time-scales into absolute values. The logical
choice for this reference time-scale is the duration over which the star
formation rate (SFR) tracer is visible because it can be characterised using
stellar population synthesis (SPS) models. In this paper, we calibrate this
reference time-scale using synthetic emission maps of several SFR tracers,
generated by combining the output from a hydrodynamical disc galaxy simulation
with the SPS model SLUG2. We apply our statistical method to obtain
self-consistent measurements of each tracer's reference time-scale. These
include H and 12 ultraviolet (UV) filters (from GALEX, Swift, and
HST), which cover a wavelength range 150-350 nm. At solar metallicity, the
measured reference time-scales of H are Myr
with continuum subtraction, and 6-16 Myr without, where the time-scale
increases with filter width. For the UV filters we find 17-33 Myr, nearly
monotonically increasing with wavelength. The characteristic time-scale
decreases towards higher metallicities, as well as to lower star formation rate
surface densities, owing to stellar initial mass function sampling effects. We
provide fitting functions for the reference time-scale as a function of
metallicity, filter width, or wavelength, to enable observational applications
of our statistical method across a wide variety of galaxies.Comment: 24 pages, 18 figures, 7 tables (including Appendices); published in
MNRA
Which feedback mechanisms dominate in the high-pressure environment of the Central Molecular Zone?
This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2020 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Final published version available at https://doi.org/10.1093/mnras/staa2719.Supernovae (SNe) dominate the energy and momentum budget of stellar feedback, but the efficiency with which they couple to the interstellar medium (ISM) depends strongly on how effectively early, pre-SN feedback clears dense gas from star-forming regions. There are observational constraints on the magnitudes and timescales of early stellar feedback in low ISM pressure environments, yet no such constraints exist for more cosmologically typical high ISM pressure environments. In this paper, we determine the mechanisms dominating the expansion of H ii regions as a function of size-scale and evolutionary time within the high-pressure (P/kB ∼ 107 − 8 K cm−3) environment in the inner 100 pc of the Milky Way. We calculate the thermal pressure from the warm ionised (PHII; 104 K) gas, direct radiation pressure (Pdir), and dust processed radiation pressure (PIR). We find that (1) Pdir dominates the expansion on small scales and at early times (0.01-0.1 pc; 0.1 pc; >1 Myr); (3) during the first ≲ 1 Myr of growth, but not thereafter, either PIR or stellar wind pressure likely make a comparable contribution. Despite the high confining pressure of the environment, natal star-forming gas is efficiently cleared to radii of several pc within ∼ 2 Myr, i.e. before the first SNe explode. This ‘pre-processing’ means that subsequent SNe will explode into low density gas, so their energy and momentum will efficiently couple to the ISM. We find the H ii regions expand to a radius of ∼ 3pc, at which point they have internal pressures equal with the surrounding external pressure. A comparison with H ii regions in lower pressure environments shows that the maximum size of all H ii regions is set by pressure equilibrium with the ambient ISM.Peer reviewe
Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue
Detailed observations of the nearest star-forming regions in the Milky Way (MW) provide the ultimate benchmark for studying star formation. The extent to which the results of these Galaxy-based studies can be extrapolated to extragalactic systems depends on the overlap of the environmental conditions probed. In this paper, we compare the properties of clouds and star-forming regions in the MW with those in nearby galaxies and in the high-redshift Universe. We find that in terms of their baryonic composition, kinematics and densities, the clouds in the solar neighbourhood are similar to those in nearby galaxies. The clouds and regions in the Central Molecular Zone (CMZ, i.e. the inner 250 pc) of the MW are indistinguishable from high-redshift clouds and galaxies. The presently low star formation rate in the CMZ therefore implies that either (1) its gas represents the initial conditions for high-redshift starbursts or (2) some yet unidentified process consistently suppresses star formation over ≳ 108 yr time-scales. We conclude that the MW contains large reservoirs of gas with properties directly comparable to most of the known range of star formation environments and is therefore an excellent template for studying star formation across cosmological time-scales
- …