46 research outputs found
Pregnancy and childbirth in English prisons : institutional ignominy and the pains of imprisonment
© 2020 The Authors. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.With a prison population of approximately 9000 women in England, it is estimated that approximately 600 pregnancies and 100 births occur annually. Despite an extensive literature on the sociology of reproduction, pregnancy and childbirth among women prisoners is under‐researched. This article reports an ethnographic study in three English prisons undertaken in 2015‐2016, including interviews with 22 prisoners, six women released from prison and 10 staff members. Pregnant prisoners experience numerous additional difficulties in prison including the ambiguous status of a pregnant prisoner, physical aspects of pregnancy and the degradation of the handcuffed or chained prisoner during visits to the more public setting of hospital. This article draws on Erving Goffman's concepts of closed institutions, dramaturgy and mortification of self, Crewe et al.'s work on the gendered pains of imprisonment and Crawley's notion of ‘institutional thoughtlessness’, and proposes a new concept of institutional ignominy to understand the embodied situation of the pregnant prisoner.Peer reviewe
Foraging behavior and at-sea distribution of White-Tailed Tropicbirds in tropical ocean
The fNIRS glossary project: a consensus-based resource for functional near-infrared spectroscopy terminology
Significance: A shared understanding of terminology is essential for clear scientific communication and minimizing misconceptions. This is particularly challenging in rapidly expanding, interdisciplinary domains that utilize functional near-infrared spectroscopy (fNIRS), where researchers come from diverse backgrounds and apply their expertise in fields such as engineering, neuroscience, and psychology.
Aim: The fNIRS Glossary Project was established to develop a community-sourced glossary covering key fNIRS terms, including those related to the continuous-wave (CW), frequency-domain (FD), and time-domain (TD) NIRS techniques.
Approach: The glossary was collaboratively developed by a diverse group of 76 fNIRS researchers, representing a wide range of career stages (from PhD students to experts) and disciplines. This collaborative process, structured across five phases, ensured the glossary’s depth and comprehensiveness.
Results: The glossary features over 300 terms categorized into six key domains: analysis, experimental design, hardware, neuroscience, mathematics, and physics. It also includes abbreviations, symbols, synonyms, references, alternative definitions, and figures where relevant.
Conclusions: The fNIRS glossary provides a community-sourced resource that facilitates education and effective scientific communication within the fNIRS community and related fields. By lowering barriers to learning and engaging with fNIRS, the glossary is poised to benefit a broad spectrum of researchers, including those with limited access to educational resources
A comunidade microfitoplanctônica do Arquipélago de São Pedro e São Paulo (Atlântico Norte-Equatorial): variação diurna e espacial
Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial
Background
Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.
Methods
The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 μg in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 μg in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (anti-spike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.
Findings
Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6–77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3–214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030–27 162), which increased to 37 460 ELU/mL (31 996–43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41–1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996–30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826–64 452), with a geometric mean fold change of 2·19 (1·90–2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37–14·32) and 15·90 (12·92–19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24–16·54] in the BNT162b2 group and 6·22 [3·90–9·92] in the mRNA-1273 group).
Interpretation
Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose
