96 research outputs found

    Loss of ATF3 exacerbates liver damage through the activation of mTOR/p70S6K/ HIF-1α signaling pathway in liver inflammatory injury.

    Get PDF
    Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays important roles in regulating immune and metabolic homeostasis. Activation of the mechanistic target of rapamycin (mTOR) and hypoxia-inducible factor (HIF) transcription factors are crucial for the regulation of immune cell function. Here, we investigated the mechanism by which the ATF3/mTOR/HIF-1 axis regulates immune responses in a liver ischemia/reperfusion injury (IRI) model. Deletion of ATF3 exacerbated liver damage, as evidenced by increased levels of serum ALT, intrahepatic macrophage/neutrophil trafficking, hepatocellular apoptosis, and the upregulation of pro-inflammatory mediators. ATF3 deficiency promoted mTOR and p70S6K phosphorylation, activated high mobility group box 1 (HMGB1) and TLR4, inhibited prolyl-hydroxylase 1 (PHD1), and increased HIF-1α activity, leading to Foxp3 downregulation and RORγt and IL-17A upregulation in IRI livers. Blocking mTOR or p70S6K in ATF3 knockout (KO) mice or bone marrow-derived macrophages (BMMs) downregulated HMGB1, TLR4, and HIF-1α and upregulated PHD1, increasing Foxp3 and decreasing IL-17A levels in vitro. Silencing of HIF-1α in ATF3 KO mice ameliorated IRI-induced liver damage in parallel with the downregulation of IL-17A in ATF3-deficient mice. These findings demonstrated that ATF3 deficiency activated mTOR/p70S6K/HIF-1α signaling, which was crucial for the modulation of TLR4-driven inflammatory responses and T cell development. The present study provides potential therapeutic targets for the treatment of liver IRI followed by liver transplantation

    Exact results of the limited penetrable horizontal visibility graph associated to random time series and its application

    Get PDF
    The limited penetrable horizontal visibility algorithm is a new time analysis tool and is a further development of the horizontal visibility algorithm. We present some exact results on the topological properties of the limited penetrable horizontal visibility graph associated with random series. We show that the random series maps on a limited penetrable horizontal visibility graph with exponential degree distribution P(k)exp[λ(k2ρ2)],λ=ln[(2ρ+3)/(2ρ+2)],ρ=0,1,2,...,k=2ρ+2,2ρ+3,...P(k)\sim exp[-\lambda (k-2\rho-2)], \lambda = ln[(2\rho+3)/(2\rho+2)],\rho=0,1,2,...,k=2\rho+2,2\rho+3,..., independent of the probability distribution from which the series was generated. We deduce the exact expressions of the mean degree and the clustering coefficient and demonstrate the long distance visibility property. Numerical simulations confirm the accuracy of our theoretical results. We then examine several deterministic chaotic series (a logistic map, the Heˊ\acute{e}non map, the Lorentz system, and an energy price chaotic system) and a real crude oil price series to test our results. The empirical results show that the limited penetrable horizontal visibility algorithm is direct, has a low computational cost when discriminating chaos from uncorrelated randomness, and is able to measure the global evolution characteristics of the real time series.Comment: 23 pages, 12 figure

    Structure of the Global Plastic Waste Trade Network and the Impact of China's Import Ban

    Get PDF
    Millions of tonnes (teragrams) of plastic waste are traded around the world every year, which plays an important role in partially substituting virgin plastics as a source of raw materials in plastic product manufacturing. In this paper, global plastic waste trade networks (GPWTNs) from 1988 to 2017 are established using the UN-Comtrade database. The spatiotemporal evolution of the GPWTNs is analyzed. Attention is given to the country ranks, inter- and intra-continental trade flows, and geo-visual communities in the GPWTNs. We also evaluate the direct and indirect impacts of China’s plastic waste import ban on the GPWTNs. The results show that the GPWTNs have small-world and scale-free properties and a core-periphery structure. The geography of the plastic waste trade is structured by Asia as the dominant importer and North America and Europe as the largest sources of plastic waste. China is the unrivaled colossus in the global plastic waste trade. After China’s import ban, the plastic waste trade flows have been largely redirected to Southeast Asian countries. Compared with import countries, export countries are more important for the robustness of GPWTNs. Clearly, developed countries will not announce bans on plastic waste exports; these countries have strong motivation to continue to shift plastic waste to poorer countries. However, the import bans from developing countries will compel developed countries to build new disposal facilities and deal with their plastic waste domestically

    Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Get PDF
    In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD) region. Non-methane hydrocarbons (NMHCs), as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou

    Effects of a mutual recovery intervention on mental health in depressed elderly community-dwelling adults: a pilot study

    Get PDF
    BackgroundThe prevalence of depression in the elderly is growing worldwide, and the population aging in China makes depression a major health problem for the elderly adults and a tremendous burden to the society. Effective interventions should be determined to provide an approach solving the problem and improving the situation. This study examined the effectiveness of a mutual recovery program intervention on depressive symptom, sleep quality, and well-being in community-dwelling elderly adults with depressive symptom in Shanghai.MethodsRecruitment was performed between July 2012 and August 2012. Using a cluster randomized wait-list controlled design, we randomized 6 communities (n = 237) into either the intervention group (3 communities, n = 105) or to a wait-list control group (3 communities, n = 132). All participants met the inclusion criteria for depression, which were defined by The Geriatric Depression Scale (GDS-15). From March to May of 2013, participants in the intervention group underwent a 2-month mutual recovery program intervention. The intervention included seven 90-min, weekly sessions that were based on a standardized self-designed schedule. Depression was used as primary outcome at three measurement moments: baseline (T1), before intervention at 24 weeks (T2), and immediately after intervention at 32 weeks (T3). Well-being and sleep quality were used as the secondary outcomes, and were evaluated based on the WHO-5 Well-being Index (WHO-5) and the Self-administered Sleep Questionnaire (SSQ). Finally, a total of 225 participants who completed all the sessions and the three measurements entered the final analysis. Mixed-model repeated measures ANOVAs were performed to estimate the intervention effects.ResultsThere was no significant difference in gender, marriage, age structure, post-work type, and education background between the intervention and control group at baseline. Multivariate ANOVAs showed that there was no significant difference within the groups in terms of sleep, well-being, and depression at baseline and before the intervention. Mixed-model repeated measures ANOVAs detected a group × time interaction on depression, sleep, and well-being and showed a favorable intervention effect within groups immediately after the intervention.ConclusionsThe mutual recovery program could be a creative and effective approach to improve mental health in older community-dwelling adults with depressive symptom

    Numerical Study on Aerodynamic Performance of Different Forms of Adaptive Blades for Vertical Axis Wind Turbines

    No full text
    The wind energy exploitation technique has been developed very quickly in recent years. The vertical axis wind turbine is a hot research domain due to several advantages: low noise, flexible for installation, ease of maintenance, great safety and credibility, etc. The aerodynamic performances of different forms of airfoils including an active deformation airfoil and a fluid-solid coupling passive airfoil with two-dimensional (2D) and three-dimensional (3D) cases have been investigated numerically in this paper. Firstly, the aerodynamic performances of the airfoils with the maximum deformation amplitudes of their cambers which are 3%, 5% and 7% of the chord length have been discussed, respectively, with the angles of attack in the range of 0° and 20°. Secondly, for the angle of attack set at 18°, the two-way fluid-solid coupling simulations with the Young’s Modulus of 1 Mpa and 2 Mpa have also been investigated. Results show that: (1) for the pseudo 3D and real 3D single active deformation airfoil cases, the lift coefficients increase as the maximum deformation amplitudes augment from 3% to 7% of the chord length at the same angle of attack. With the same maximum deformation amplitude, when the angles of attack increase from 0° to 20°, the lift coefficients which increase firstly and then decrease are bigger than that of the original NACA0012 airfoil. When the maximum deformation amplitude of the pseudo 3D airfoil reaches 5% of the chord length, a relatively good aerodynamic performance with better inhibition effect of vortex generation can be obtained. The 3D vortex distribution demonstrates that the deformable airfoil has a better vortex generation controlling effect at the middle cross-section along the spanwise direction than the non-deformable airfoil. (2) From the aspect of fluid-solid coupling, the lift increases and the drag decreases so that the lift to drag ratio has a big improvement when the Young’s Modulus is equal to 1 Mpa and 2 Mpa. The deformable airfoil can inhibit the generation and the shedding of the surface vortex when the fluid-solid coupling effect is considered
    corecore