81 research outputs found

    Grassland greening and water resource availability may coexist in a warming climate in Northern China and the Tibetan Plateau

    Get PDF
    Greening of Northern China and the Tibetan Plateau (NCTP) has been observed by increases in the remotely sensed leaf area index (LAI), driven primarily by CO2 fertilization effects, anthropogenic warming, and the implementation of ecological restoration programs. Continued growth of LAI throughout the 21st century is also projected by the Coupled Model Intercomparison Project Phase 6 (CMIP6) scenarios. However, the question of whether local water resources can sustain ongoing grassland greening has not been adequately investigated. Here we assessed the sustainability of water resources under grassland greening across NCTP under various climate scenarios using water yield (WY, defined as precipitation minus actual evapotranspiration) as the key metric. Unexpectedly, we observe the coexistence of increases in LAI and WY in most of NCTP. In a warming climate with increasing precipitation and CO2, we find that grasses maintain high water use efficiency to sustain their growth, contributing to continued local water resource availability. Thus, livestock production may also continue to increase under the simultaneous growth of LAI and WY in the future

    Wetting-Induced Budding of Vesicles in Contact with Several Aqueous Phases

    Get PDF
    Osmotic deflation of vesicles enclosing two liquid phases can lead to bulging of one of the phases from the vesicle body. This budding process is preceded by a complete to partial wetting transition of one of the liquid phases on the membrane and depends on the membrane tensions and the tension of the interface between the enclosed liquid phases. These tensions dominate in different morphology regimes, the crossover of which initiates the budding process. In addition, the degree of budding can be controlled by aspiration via micropipets. We also demonstrate that the budding direction can be reversed if there are two external phases in contact with the vesicle

    Serum anti-Mullerian hormone predicts ovarian response in (Macaca fascicularis) monkeys

    Get PDF
    AMH as a promising predictor of ovarian response has been studied extensively in women undergoing assisted reproductive technology treatment, but little is known about its prediction value in monkeys undergoing ovarian stimulation. In the current study, a total of 380 cynomolgus monkeys ranging from 5 to 12 years received 699 ovarian stimulation cycles. Serum samples were collected for AMH measure with enzyme-linked immunosorbent assay. It was found that serum AMH levels were positive correlated with the number of retrieved oocytes (P < 0.01) in the first, second and third stimulation cycles. In the first cycles, area under the curve (ROCAUC) of AMH is 0.688 for low response and 0.612 for high response respectively, indicating the significant prediction values (P = 0.000 and P = 0.005). The optimal AMH cutoff value was 9.68 ng/mL for low ovarian response and 15.88 ng/mL for high ovarian response prediction. In the second stimulation cycles, the significance of ROCAUC of AMH for high response rather than the low response was observed (P = 0.001 and P = 0.468). The optimal AMH cutoff value for high ovarian response was 15.61 ng/mL. In the third stimulation cycles, AMH lost the prediction value with no significant ROCAUC. Our data demonstrated that AMH, not age, is a cycle-dependent predictor for ovarian response in form of oocyte yields, which would promote the application of AMH in assisted reproductive treatment (ART) of female cynomolgus monkeys. AMH evaluation would optimize candidate selection for ART and individualize the ovarian stimulation strategies, and consequentially improve the efficiency in monkeys

    Phase separation and crystallization of La2O3 doped ZnO-B2O3-SiO2 glass

    Get PDF
    In order to investigate the effect of the La2O3 on the phase separation and crystallization of ZnO-B2O3-SiO2 glass, after the occurence of the phase separation and crystallization of glasses by heat treatment, the microstructure morphology and distribution of elements in different sample areas were characterized by the scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS); the non-isothermal crystallization kinetics of the glass samples was studied by using a differential scanning calorimeter (DSC) and the precipitated crystals of crystallized glass were determined by the X-ray diffraction (XRD). The results suggest that the phase separation and crystallization of 60ZnO-30B2O3-10SiO2 glass occur at glass surface, and the incorporation of small amount (<4 mol%) of La2O3 significantly inhibits the glass phase separation and consequently improves the thermal stability of glass. Doping of La2O3 accelerates the glass crystallization at the elevated temperature (660 °C), making the depth of crystal layer thicker and diffraction intensity in XRD patterns stronger. However, due to the precipitation of several crystals that occur simultaneously when La2O3 doping amount is 4 mol%, crystallization of the 60ZnO-30B2O3-10SiO2 glass is obviously depressed, the crystallization activation energy Ec and the relative crystallinity Xc of the glass reach the maximum and the minimum values, respectively. Although transition from one-dimensional growth of crystals to two-dimensional growth of crystals results from La2O3 addition, the one-dimensional growth of crystals remains dominant in crystallization process. This work can provide some useful information for preparing glass ceramics with nano-crystals precipitated in the glass surface

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat
    corecore