344 research outputs found

    Size dependent electric voltage-controlled magnetic anisotropy in multiferroic heterostructures: Interface-charge and strain co-mediated magnetoelectric coupling

    Full text link
    We present a phenomenological scheme to study the size-dependent electric voltage-controlled magnetic anisotropy in ferromagnetic (FM)/ferroelectric (FE) heterostructures. The FM layers are either metallic Fe(001), Ni(001), Co(0001), or half-metallic (La, Sr)MnO3 films. Two magnetoelectric mechanisms, i.e., interface-charge and strain-mediated couplings, are considered. We show that the interface-charge mediated coupling is the main mechanism for the magnetoelectic coupling when the FM film thickness is below a certain transition thickness dtr while the strain-mediated coupling dominates above dtr.Comment: 10 pages, 4 figure

    Multi-objective optimisation of machine tool error mapping using automated planning

    Get PDF
    Error mapping of machine tools is a multi-measurement task that is planned based on expert knowledge. There are no intelligent tools aiding the production of optimal measurement plans. In previous work, a method of intelligently constructing measurement plans demonstrated that it is feasible to optimise the plans either to reduce machine tool downtime or the estimated uncertainty of measurement due to the plan schedule. However, production scheduling and a continuously changing environment can impose conflicting constraints on downtime and the uncertainty of measurement. In this paper, the use of the produced measurement model to minimise machine tool downtime, the uncertainty of measurement and the arithmetic mean of both is investigated and discussed through the use of twelve different error mapping instances. The multi-objective search plans on average have a 3% reduction in the time metric when compared to the downtime of the uncertainty optimised plan and a 23% improvement in estimated uncertainty of measurement metric when compared to the uncertainty of the temporally optimised plan. Further experiments on a High Performance Computing (HPC) architecture demonstrated that there is on average a 3% improvement in optimality when compared with the experiments performed on the PC architecture. This demonstrates that even though a 4% improvement is beneficial, in most applications a standard PC architecture will result in valid error mapping plan

    Microgravity-Induced Alterations of Inflammation-Related Mechanotransduction in Endothelial Cells on Board SJ-10 Satellite

    Get PDF
    Endothelial cells (ECs) are mechanosensitive cells undergoing morphological and functional changes in space. Ground-based study has provided a body of evidences about how ECs can respond to the effect of simulated microgravity, however, these results need to be confirmed by spaceflight experiments in real microgravity. In this work, we cultured EA.hy926 ECs on board the SJ-10 Recoverable Scientific Satellite for 3 and 10 days, and analyzed the effects of space microgravity on the ECs. Space microgravity suppressed the glucose metabolism, modulated the expression of cellular adhesive molecules such as ICAM-1, VCAM-1, and CD44, and depressed the pro-angiogenesis and pro-inflammation cytokine secretion. Meanwhile, it also induced the depolymerization of actin filaments and microtubules, promoted the vimentin accumulation, restrained the collagen I and fibronectin deposition, regulated the mechanotransduction through focal adhesion kinase and Rho GTPases, and enhanced the exosome-mediated mRNA transfer. Unlike the effect of simulated microgravity, neither three-dimensional growth nor enhanced nitric oxide production was observed in our experimental settings. This work furthers the understandings in the effects and mechanisms of space microgravity on ECs, and provides useful information for future spaceflight experimental design

    Combined modeling of cell aggregation and adhesion mediated by receptor–ligand interactions under shear flow

    Get PDF
    AbstractBlood cell aggregation and adhesion to endothelial cells under shear flow are crucial to many biological processes such as thrombi formation, inflammatory cascade, and tumor metastasis, in which these cellular interactions are mainly mediated by the underlying receptor–ligand bindings. While theoretical modeling of aggregation dynamics and adhesion kinetics of interacting cells have been well studied separately, how to couple these two processes remains unclear. Here we develop a combined model that couples cellular aggregation dynamics and adhesion kinetics under shear flow. The impacts of shear rate (or shear stress) and molecular binding affinity were elucidated. This study provides a unified model where the action of a fluid flow drives cell aggregation and adhesion under the modulations of the mechanical shear flow and receptor–ligand interaction kinetics. It offers an insight into understanding the relevant biological processes and functions

    Identification of the Conformational transition pathway in PIP2 Opening Kir Channels

    Get PDF
    The gating of Kir channels depends critically on phosphatidylinositol 4,5-bisphosphate (PIP2), but the detailed mechanism by which PIP2regulates Kir channels remains obscure. Here, we performed a series of Targeted molecular dynamics simulations on the full-length Kir2.1 channel and, for the first time, were able to achieve the transition from the closed to the open state. Our data show that with the upward motion of the cytoplasmic domain (CTD) the structure of the C-Linker changes from a loop to a helix. The twisting of the C-linker triggers the rotation of the CTD, which induces a small downward movement of the CTD and an upward motion of the slide helix toward the membrane that pulls the inner helix gate open. At the same time, the rotation of the CTD breaks the interaction between the CD- and G-loops thus releasing the G-loop. The G-loop then bounces away from the CD-loop, which leads to the opening of the G-loop gate and the full opening of the pore. We identified a series of interaction networks, between the N-terminus, CD loop, C linker and G loop one by one, which exquisitely regulates the global conformational changes during the opening of Kir channels by PIP2

    Identification of the Conformational transition pathway in PIP2 Opening Kir Channels

    Get PDF
    The gating of Kir channels depends critically on phosphatidylinositol 4,5-bisphosphate (PIP2), but the detailed mechanism by which PIP2 regulates Kir channels remains obscure. Here, we performed a series of Targeted molecular dynamics simulations on the full-length Kir2.1 channel and, for the first time, were able to achieve the transition from the closed to the open state. Our data show that with the upward motion of the cytoplasmic domain (CTD) the structure of the C-Linker changes from a loop to a helix. The twisting of the C-linker triggers the rotation of the CTD, which induces a small downward movement of the CTD and an upward motion of the slide helix toward the membrane that pulls the inner helix gate open. At the same time, the rotation of the CTD breaks the interaction between the CD- and G-loops thus releasing the G-loop. The G-loop then bounces away from the CD-loop, which leads to the opening of the G-loop gate and the full opening of the pore. We identified a series of interaction networks, between the N-terminus, CD loop, C linker and G loop one by one, which exquisitely regulates the global conformational changes during the opening of Kir channels by PIP2

    Measuring the Behavioural Component of the S&P 500 and its Relationship to Financial Stress and Aggregated Earnings Surprises

    Get PDF
    Scholars in management and economics have shown increasing interest in isolating the behavioural dimension of market evolution. Indeed, by improving forecast accuracy and precision, this exercise would certainly help firms to anticipate economic fluctuations, thus leading to more profitable business and investment strategies. Yet, how to extract the behavioural component from real market data remains an open question. By using monthly data on the returns of the constituents of the S&P 500 index, we propose a Bayesian methodology to measure the extent to which market data conform to what is predicted by prospect theory (the behavioural perspective), relative to the (standard) subjective expected utility theory baseline.We document a significant behavioural component that reaches its peaks during recession periods and is correlated to measures of financial volatility, market sentiment and financial stress with expected sign. Moreover, the behavioural component decreases around macroeconomic corporate earnings news, while it reacts positively to the number of surprising announcements
    • …
    corecore