55 research outputs found

    When “Not Getting Caught” Is Not Enough: Preventing Foreign Corrupt Practices Act Violations and Liability in International Project Finance

    Get PDF
    Reinhard Siekaczek, a skeptical former accountant of Siemens A.G., expressed little optimism that Siemens’ violations of German law and the U.S. Foreign Corrupt Practices Act’s (“FCPA”) prohibitions against bribing foreign officials would deter others in a world full of corruption. Siekaczek states, “[p]eople will only say about Siemens that they were unlucky and that they broke the 11th commandment. The 11th commandment is: ‘Don’t get caught.’” At Siemens, Siekaczek participated in large-scale bribery by helping maintain a budget of tens of millions of dollars per year that was dedicated to bribing foreign officials, what one bureaucrat described as the “Siemens’ business model” and “institutionalized corruption.” Eventually, Siemens and many of its subsidiaries paid a heavy price for getting caught: over $2.6 billion spent in fees, fines to the U.S. and Germany, and corporate reform measures to replace corruption with compliance. While many American businesspeople and companies who understand the realities of doing business in foreign countries would likely agree with Siekaczek’s lamentation, the problem with the 11th commandment is that “not getting caught” for bribery is becoming increasingly difficult in the U.S. This is so not only because of the FCPA prevents the making of “corrupt payments” to foreign officials for the purpose of promoting business interests, but because the Department of Justice is strictly enforcing the FCPA by investigating more cases levying extremely high fines in plea bargains, and even performing sting operations through the Federal Bureau of Investigation. Avoiding notice is likely hard enough in a situation where only one individual is paying bribes, but bribery naturally becomes harder to conceal when multiple parties are involved. Such is the case in the world of international project finance. Because the FCPA’s reach is not restricted to the people who physically pay the money or make an improper offer, liability can extend much further than U.S. companies and businesspeople might expect and hope. Consequently, complicated issues of liability exist for many project finance participants because any one project can include many people and entities—lenders, agents, project sponsors, project companies, constructors, operators, and so forth. Thus, rather than hoping to “not get caught,” project finance participants should take active steps throughout the duration of a project to identify potential violations and prevent bribes. This strategy presents participants with the best opportunity for avoiding FCPA liability, possible jail time, and severe economic and other consequences to the project

    Akzo and the Debate on In-House Privilege in the European Union

    Get PDF

    Productivity trends and collaboration patterns: A diachronic study in the eating disorders field

    Full text link
    [EN] Objective The present study seeks to extend previous bibliometric studies on eating disorders (EDs) by including a time-dependent analysis of the growth and evolution of multi-author collaborations and their correlation with ED publication trends from 1980 to 2014 (35 years). Methods Using standardized practices, we searched Web of Science (WoS) Core Collection (WoSCC) (indexes: Science Citation Index-Expanded [SCIE], & Social Science Citation Index [SSCI]) and Scopus (areas: Health Sciences, Life Sciences, & Social Sciences and Humanities) to identify a large sample of articles related to EDs. We then submitted our sample of articles to bibliometric and graph theory analyses to identify co-authorship and social network patterns. Results We present a large number of detailed findings, including a clear pattern of scientific growth measured as number of publications per five-year period or quinquennium (Q), a tremendous increase in the number of authors attracted by the ED subject, and a very high and steady growth in collaborative work. Conclusions We inferred that the noted publication growth was likely driven by the noted increase in the number of new authors per Q. Social network analyses suggested that collaborations within ED follow patters of interaction that are similar to well established and recognized disciplines, as indicated by the presence of a Âżgiant clusterÂż, high cluster density, and the replication of the Âżsmall worldÂż phenomenonÂżthe principle that we are all linked by short chains of acquaintances.This work was performed with a subsidy from Universidad Catolica de Valencia "San Vicente Martir" to resarch group INDOTEI: Evaluacion de la Ciencia, for the years 2016-2017. This work is benefited from Spanish Government assistance through Government Delegation for the National Drugs Plan of the Ministry of Health, Social Services and Equality (project 2016/028); and National R+D+I (projects: CS02012-39632-C02-01 and CS02015-65594-C2-2-R) and 2015-Networks of Excellence Call (project CS02015-71867-REDT) of the Ministry of Economy and Competitiveness.Valderrama Zurian, JC.; Aguilar-Moya, R.; Cepeda-Benito, A.; Melero-Fuentes, D.; Navarro-Moreno, MÁ.; GandĂ­a-Balaguer, A.; Aleixandre-Benavent, R. (2017). Productivity trends and collaboration patterns: A diachronic study in the eating disorders field. PLoS ONE. 12(8):1-17. https://doi.org/10.1371/journal.pone.0182760S117128McClelland, J., Bozhilova, N., Campbell, I., & Schmidt, U. (2013). A Systematic Review of the Effects of Neuromodulation on Eating and Body Weight: Evidence from Human and Animal Studies. European Eating Disorders Review, 21(6), 436-455. doi:10.1002/erv.2256Lancelot, C., Brooks-Gunn, J., Warren, M. P., & Newman, D. L. (1991). Comparison of DSM-III and DSM-III-R bulimia nervosa classifications for psychopathology and other eating behaviors. International Journal of Eating Disorders, 10(1), 57-66. doi:10.1002/1098-108x(199101)10:13.0.co;2-tWONDERLICH, S. A., CROSBY, R. D., JOINER, T., PETERSON, C. B., BARDONE-CONE, A., KLEIN, M., 
 VRSHEK, S. (2005). Personality subtyping and bulimia nervosa: psychopathological and genetic correlates. Psychological Medicine, 35(5), 649-657. doi:10.1017/s0033291704004234Spitzer, R. L., Devlin, M. J., Walsh, B. T., Hasin, D., Wing, R., Marcus, M. D., 
 Nonas, C. (1991). Binge eating disorder: To be or not to be in DSM-IV. International Journal of Eating Disorders, 10(6), 627-629. doi:10.1002/1098-108x(199111)10:63.0.co;2-4Wonderlich, S. A., Gordon, K. H., Mitchell, J. E., Crosby, R. D., & Engel, S. G. (2014). The Validity and Clinical Utility of Binge Eating Disorder. FOCUS, 12(4), 489-505. doi:10.1176/appi.focus.120412Theander, S. S. (2002). Literature on eating disorders during 40 Years: increasing number of papers, emergence of bulimia nervosa. European Eating Disorders Review, 10(6), 386-398. doi:10.1002/erv.495Clinton, D. (2010). Towards an ecology of eating disorders: Creating sustainability through the integration of scientific research and clinical practice. European Eating Disorders Review, 18(1), 1-9. doi:10.1002/erv.986Soh, N. L.-W., & Walter, G. (2013). Publications on cross-cultural aspects of eating disorders. Journal of Eating Disorders, 1(1). doi:10.1186/2050-2974-1-4Wuchty, S., Jones, B. F., & Uzzi, B. (2007). The Increasing Dominance of Teams in Production of Knowledge. Science, 316(5827), 1036-1039. doi:10.1126/science.1136099Kumar, S. (2015). Co-authorship networks: a review of the literature. Aslib Journal of Information Management, 67(1), 55-73. doi:10.1108/ajim-09-2014-0116BarabĂĄsi, A. ., Jeong, H., NĂ©da, Z., Ravasz, E., Schubert, A., & Vicsek, T. (2002). Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications, 311(3-4), 590-614. doi:10.1016/s0378-4371(02)00736-7Newman, M. E. J. (2004). Coauthorship networks and patterns of scientific collaboration. Proceedings of the National Academy of Sciences, 101(Supplement 1), 5200-5205. doi:10.1073/pnas.0307545100Aleixandre-Benavent, R., & Alonso-Arroyo, A. (2011). Indicadores bibliomĂ©tricos, patologĂ­a del aparato respiratorio y reducciĂłn del consumo de tabaco. Revista de PatologĂ­a Respiratoria, 14(1), 1-3. doi:10.1016/s1576-9895(11)70095-9Pino-DĂ­az, J., JimĂ©nez-Contreras, E., RuĂ­z-Baños, R., & BailĂłn-Moreno, R. (2011). EvaluaciĂłn de redes tecnocientĂ­ficas: la red española sobre Áreas Protegidas, segĂșn la Web of Science. Revista española de DocumentaciĂłn CientĂ­fica, 34(3), 301-333. doi:10.3989/redc.2011.3.804Valderrama-ZuriĂĄn, J.-C., Aguilar-Moya, R., Melero-Fuentes, D., & Aleixandre-Benavent, R. (2015). A systematic analysis of duplicate records in Scopus. Journal of Informetrics, 9(3), 570-576. doi:10.1016/j.joi.2015.05.002Guardiola-Wanden-Berghe, R., Sanz-Valero, J., & Wanden-Berghe, C. (2012). Medical subject headings versus American Psychological Association Index Terms: indexing eating disorders. Scientometrics, 94(1), 305-311. doi:10.1007/s11192-012-0866-7Soh, N., Walter, G., Touyz, S., Russell, J., Malhi, G. S., & Hunt, G. E. (2012). Food for thought: Comparison of citations received from articles appearing in specialized eating disorder journals versus general psychiatry journals. International Journal of Eating Disorders, 45(8), 990-994. doi:10.1002/eat.22036Theander, S. S. (2004). Trends in the literature on eating disorders over 36 years(1965-2000): terminology, interpretation and treatment. European Eating Disorders Review, 12(1), 4-17. doi:10.1002/erv.559Kawamura, M., Thomas, C. D. L., Tsurumoto, A., Sasahara, H., & Kawaguchi, Y. (2000). Lotka’s law and productivity index of authors in a scientific journal. Journal of Oral Science, 42(2), 75-78. doi:10.2334/josnusd.42.75Lawani SM. Quality, collaboration and citations in cancer research: A bibliometric study. PhD thesis. Florida State University, Tallahassee. 1980.Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Jacomy, M., Venturini, T., Heymann, S., & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLoS ONE, 9(6), e98679. doi:10.1371/journal.pone.0098679Pike, K. M., & Dunne, P. E. (2015). The rise of eating disorders in Asia: a review. Journal of Eating Disorders, 3(1). doi:10.1186/s40337-015-0070-2El Ghoch, M., Soave, F., Calugi, S., & Dalle Grave, R. (2013). Eating Disorders, Physical Fitness and Sport Performance: A Systematic Review. Nutrients, 5(12), 5140-5160. doi:10.3390/nu5125140Jones, A. W. (2007). The distribution of forensic journals, reflections on authorship practices, peer-review and role of the impact factor. Forensic Science International, 165(2-3), 115-128. doi:10.1016/j.forsciint.2006.05.013Baker, T., Hatsukami, D., Lerman, C., O’Malley, S., Shields, A., & Fiore, M. (2003). Transdisciplinary science applied to the evaluation of treatments for tobacco use. Nicotine & Tobacco Research, 5(6), 89-99. doi:10.1080/14622200310001625564GonzĂĄlez-Alcaide, G., Melero-Fuentes, D., Aleixandre-Benavent, R., & Valderrama-ZuriĂĄn, J.-C. (2013). Productivity and Collaboration in Scientific Publications on Criminology. Journal of Criminal Justice Education, 24(1), 15-37. doi:10.1080/10511253.2012.664153LĂłpez-Muñoz, F., Alamo, C., Rubio, G., GarcĂ­a-GarcĂ­a, P., MartĂ­n-Agueda, B., & Cuenca, E. (2003). Bibliometric analysis of biomedical publications on SSRI during 1980-2000. Depression and Anxiety, 18(2), 95-103. doi:10.1002/da.10121GonzĂĄlez-Alcaide, G., Aleixandre-Benavent, R., Navarro-Molina, C., & Valderrama-ZuriĂĄn, J. C. (2008). Coauthorship networks and institutional collaboration patterns in reproductive biology. Fertility and Sterility, 90(4), 941-956. doi:10.1016/j.fertnstert.2007.07.1378GonzĂĄlez-Alcaide, G., Park, J., HuamanĂ­, C., BelinchĂłn, I., & Ramos, J. M. (2015). Evolution of Cooperation Patterns in Psoriasis Research: Co-Authorship Network Analysis of Papers in Medline (1942–2013). PLOS ONE, 10(12), e0144837. doi:10.1371/journal.pone.0144837Bordons, M., & Ángeles Zulueta, M. (2002). La interdisciplinariedad en los grupos españoles de investigaciĂłn en el ĂĄrea cardiovascular. Revista Española de CardiologĂ­a, 55(9), 900-912. doi:10.1016/s0300-8932(02)76728-6Chan, H. F., Önder, A. S., & Torgler, B. (2015). The first cut is the deepest: repeated interactions of coauthorship and academic productivity in Nobel laureate teams. Scientometrics, 106(2), 509-524. doi:10.1007/s11192-015-1796-yBordons, M., Aparicio, J., GonzĂĄlez-Albo, B., & DĂ­az-Faes, A. A. (2015). The relationship between the research performance of scientists and their position in co-authorship networks in three fields. Journal of Informetrics, 9(1), 135-144. doi:10.1016/j.joi.2014.12.001Newman, M. E. J. (2001). The structure of scientific collaboration networks. Proceedings of the National Academy of Sciences, 98(2), 404-409. doi:10.1073/pnas.98.2.404Fatt, C. K., Ujum, E. A., & Ratnavelu, K. (2010). The structure of collaboration in the Journal of Finance. Scientometrics, 85(3), 849-860. doi:10.1007/s11192-010-0254-0Kretschmer, H. (2004). Author productivity and geodesic distance in bibliographic co-authorship networks, and visibility on the Web. Scientometrics, 60(3), 409-420. doi:10.1023/b:scie.0000034383.86665.22Yan, E., Ding, Y., & Zhu, Q. (2009). Mapping library and information science in China: a coauthorship network analysis. Scientometrics, 83(1), 115-131. doi:10.1007/s11192-009-0027-9Yin, L., Kretschmer, H., Hanneman, R. A., & Liu, Z. (2006). Connection and stratification in research collaboration: An analysis of the COLLNET network. Information Processing & Management, 42(6), 1599-1613. doi:10.1016/j.ipm.2006.03.021Lambiotte, R., & Panzarasa, P. (2009). Communities, knowledge creation, and information diffusion. Journal of Informetrics, 3(3), 180-190. doi:10.1016/j.joi.2009.03.007Leydesdorff, L. (2012). World shares of publications of the USA, EU-27, and China compared and predicted using the new Web of Science interface versus Scopus. El Profesional de la Informacion, 21(1), 43-49. doi:10.3145/epi.2012.ene.06Bartol, T., Budimir, G., Dekleva-Smrekar, D., Pusnik, M., & Juznic, P. (2013). Assessment of research fields in Scopus and Web of Science in the view of national research evaluation in Slovenia. Scientometrics, 98(2), 1491-1504. doi:10.1007/s11192-013-1148-8LĂłpez-Illescas, C., de Moya-AnegĂłn, F., & Moed, H. F. (2008). Coverage and citation impact of oncological journals in the Web of Science and Scopus. Journal of Informetrics, 2(4), 304-316. doi:10.1016/j.joi.2008.08.001Warren, C. S., Gleaves, D. H., Cepeda-Benito, A., Fernandez, M. del C., & Rodriguez-Ruiz, S. (2005). Ethnicity as a protective factor against internalization of a thin ideal and body dissatisfaction. International Journal of Eating Disorders, 37(3), 241-249. doi:10.1002/eat.20102Prince, R., & Thebaud, E. F. (1983). Is Anorexia Nervosa a Culture-Bound Syndrome? Transcultural Psychiatric Research Review, 20(4), 299-302. doi:10.1177/136346158302000419Miller, M. N., & Pumariega, A. J. (2001). Culture and Eating Disorders: A Historical and Cross-Cultural Review. Psychiatry: Interpersonal and Biological Processes, 64(2), 93-110. doi:10.1521/psyc.64.2.93.1862

    Nurses' perceptions of aids and obstacles to the provision of optimal end of life care in ICU

    Get PDF
    Contains fulltext : 172380.pdf (publisher's version ) (Open Access

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore