296 research outputs found

    The Economic Case for Landscape Restoration in Latin America

    Get PDF
    Degraded lands—lands that have lost some degree of their natural productivity through human activity—account for over 20 percent of forest and agricultural lands in Latin America and the Caribbean. Some 300 million hectares of the region's forests are considered degraded, and about 350 million hectares are now classified as deforested. The agriculture and forestry sectors are growing and exerting great pressure on natural areas. With the region expected to play an increasingly important role in global food security, this pressure will continue to ratchet up. In addition, land degradation is a major driver in greenhouse gas emissions in the region. Forest and landscape restoration can offer a solution to these increasing pressures

    Canonical Melnikov theory for diffeomorphisms

    Full text link
    We study perturbations of diffeomorphisms that have a saddle connection between a pair of normally hyperbolic invariant manifolds. We develop a first-order deformation calculus for invariant manifolds and show that a generalized Melnikov function or Melnikov displacement can be written in a canonical way. This function is defined to be a section of the normal bundle of the saddle connection. We show how our definition reproduces the classical methods of Poincar\'{e} and Melnikov and specializes to methods previously used for exact symplectic and volume-preserving maps. We use the method to detect the transverse intersection of stable and unstable manifolds and relate this intersection to the set of zeros of the Melnikov displacement.Comment: laTeX, 31 pages, 3 figure

    Dominant B-cell epitopes from cancer/stem cell antigen SOC2 recognized by serum samples from cancer patients

    Get PDF
    Cataloged from PDF version of article.Human sex determining region Y-box 2 (SOX2) is an important transcriptional factor involved in the pluripotency and stemness of human embryonic stem cells. SOX2 plays important roles in maintaining cancer stem cell activities of melanoma and cancers of the brain, prostate, breast, and lung. SOX2 is also a lineage survival oncogene for squamous cell carcinoma of the lung and esophagus. Spontaneous cellular and humoral immune responses against SOX2 present in cancer patients classify it as a tumor-associated antigen (TAA) shared by lung cancer, glioblastoma, and prostate cancer among others. In this study, B-cell epitopes were predicted using computer-assisted algorithms. Synthetic peptides based on the prediction were screened for recognition by serum samples from cancer patients using ELISA. Two dominant B-cell epitopes, SOX2:52-87 and SOX2:98-124 were identified. Prostate cancer, glioblastoma and lung cancer serum samples that recognized the above SOX2 epitopes also recognized the full-length protein based on Western blot. These B-cell epitopes may be used in assessing humoral immune responses against SOX2 in cancer immunotherapy and stem cell-related transplantation

    Measurement Challenges for Cyber Cyber Digital Twins: Experiences from the Deployment of Facebook's WW Simulation System

    Get PDF
    A cyber cyber digital twin is a deployed software model that executes in tandem with the system it simulates, contributing to, and drawing from, the systems behaviour. This paper outlines Facebooks cyber cyber digital twin, dubbed WW, a twin of Facebooks WWW platform, built using web-enabled simulation. The paper focuses on the current research challenges and opportunities in the area of measurement. Measurement challenges lie at the heart of modern simulation. They directly impact how we use simulation outcomes for automated online and semi-Automated offline decision making. Measurements also encompas how we verify and validate those outcomes. Modern simulation systems are increasingly becoming more like cyber cyber digital twins, effectively moving from manual to automated decision making, hence, these measurement challenges acquire ever greater significance

    Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins

    Get PDF
    A cyber-cyber digital twin is a simulation of a software system. By contrast, a cyber-physical digital twin is a simulation of a non-software (physical) system. Although cyber-physical digital twins have received a lot of recent attention, their cyber-cyber counterparts have been comparatively overlooked. In this paper we show how the unique properties of cyber-cyber digital twins open up exciting opportunities for research and development. Like all digital twins, the cyber-cyber digital twin is both informed by and informs the behaviour of the twin it simulates. It is therefore a software system that simulates another software system, making it conceptually truly a twin, blurring the distinction between the simulated and the simulator. Cyber-cyber digital twins can be twins of other cyber-cyber digital twins, leading to a hierarchy of twins. As we shall see, these apparently philosophical observations have practical ramifications for the design, implementation and deployment of digital twins at Facebook

    First record of eucalyptus gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) in Mexico

    Get PDF
    The presence of the invader eucalyptus gall wasp Leptocybe invasa Fischer & La Salle (Hymenoptera: Eulophidae) is recorded for the first time in Mexico. This forest pest has been detected in northern México City, at an elevation of ≈2,240m, with an average temperature of 17.9°C. It has also been detected in the areas of Nezahualcóyotl and Texcoco, State of México; Cuautla, Morelos; Guadalajara, Jalisco and Ciudad Victoria, Tamaulipas. In these states, L. invasa attacked Eucalyptus camaldulensis Dehnh. About 2.6% of the E. camaldulensis trees reported in México City had infestations in about 27% of the twigs. In addition, 25% of the leaves had galls, with an average of 23.5±4.8 galls per branches of 20cm in length

    Enemigos naturales de Dactylopius Opuntiae (Cockerell) en opuntia ficus-indica (l.) Miller en el centro de México

    Get PDF
    . Prickly pear, Opuntia ficus-indica (L.) Miller, is cultivated for many purposes around the world. In Mexico, people consume young pads as vegetables and call them nopalitos. The production of nopalitos occurs mainly around Mexico City where cochineal insects (Dactylopius spp.) are one of the most important pests. Farmers partly control Dactylopius using insecticides, but biological control could offer a tool for the Integrated Pest Management. In this paper the cochineal insects and their natural enemies were studied in Tlalnepantla, Morelos, one of the most important regions for nopalitos production in Mexico. In order to determine Dactylopius species, 30 samples sites were selected in this region. Additionally natural enemies were collected every other week during one year period in five different zones. Dactylopius opuntiae (Cockerell) was the only cochineal species found in Tlalnepantla. The natural enemies, in order of abundance, were Leucopis bellula, Sympherobius barberi, Laetilia coccidivora, Hyperaspis trifurcata, Salpingogaster cochenillivorus, Sympherobius angustus, and Chilocorus cacti. We also included some lab and field biology descriptions of these predators. Diverse factors of crop management appeared to affect D. opuntiae population and their natural enemies.El nopal Opuntia ficus-indica se cultiva con diversos propósitos en el mundo, mientras que en México, principal productor y consumidor mundial, particularmente se consume como verdura (nopalitos). La producción de nopalitos se ubica, principalmente, en los alrededores de la Ciudad de México donde las cochinillas silvestres Dactylopius spp. son de los insectos más nocivos para el cultivo. El control químico es el método de más uso por los productores, aunque el control biológico podría ser útil para un manejo integrado de plagas. No obstante, los estudios taxonómicos sobre las especies de cochinilla y sus enemigos naturales en México no son abundantes. En esta investigación se planteó conocer las especies presentes de Dactylopius y sus enemigos naturales en Tlalnepantla, Morelos, una de las áreas de mayor producción de nopalitos en México. Se seleccionaron 30 sitios distribuidos en esta región y se establecieron cinco sitios para monitoreo de enemigos naturales cada dos semanas durante un año. La única especie de cochinilla silvestre del nopal que se encontró correspondió a Dactylopius opuntiae (Cockerell), los enemigos naturales en orden de abundancia fueron Leucopis bellula, Sympherobius barberi, Laetilia coccidivora, Hyperaspis trifurcata, Salpingogaster cochenillivorus, Sympherobius angustus y Chilocorus cacti. Se proporcionan descripciones de biología de los enemigos naturales en campo y laboratorio. Diversos factores relacionados con el manejo del cultivo tuvieron un efecto sobre las poblaciones de D. opuntiae y sus enemigos naturales

    Sinergini y chalcidoidea (Hymenoptera) asociados a una agalla inducida por Atrusca sp. (Hymenoptera: Cynipidae: Cynipini) de la región noroeste de Sierra de Guadalupe, Estado de México.

    Full text link
    Los Cynipidae son insectos inductores de agallas en Quercus. Las agallas son consideradas un microecosistema constituidas por el cinípido inductor (Cynipini), por el c inípido inquilino (Synergini) y por un grupo de avispas (Chalcidoidea) cuya función no está estudiada. En México s e han descrito 180 especies de ci n í pidos, sin embargo, s e conoce poco acerca de la fauna asociada a las agallas y de las interacciones que se presentan, en este trabajo se da a conocer la fauna asociada a un morfotipo de agallas inducida por Atrusca sp. S obre Quercus mexicana . Se encontraro n 290 insect os pertenecientes a tres grupos: 257 Atrusca ( Cynipini) , 8 S ynergus (Synergini) y Chalcidoidea de cuatro géneros, 8 Baryscapus (Eulophidae), 1 Brasema (Eupelmidae), 2 Ormyrus (Ormy r idae), 3 Eurytoma y 2 Sycophila (Eurytomidae ). Los insectos asociados son nuevos registros para Atrusca , este trabajo proporciona bases para futuros estudios relacionados con la ecología de las interacciones en las agallas

    Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior

    Get PDF
    Midbrain dopamine neurons are crucial for many behavioral and cognitive functions. As the major excitatory input, glutamatergic afferents are important for control of the activity and plasticity of dopamine neurons. However, the role of glutamatergic input as a whole onto dopamine neurons remains unclear. Here we developed a mouse line in which glutamatergic inputs onto dopamine neurons are specifically impaired, and utilized this genetic model to directly test the role of glutamatergic inputs in dopamine-related functions. We found that while motor coordination and reward learning were largely unchanged, these animals showed prominent deficits in effort-related behavioral tasks. These results provide genetic evidence that glutamatergic transmission onto dopaminergic neurons underlies incentive motivation, a willingness to exert high levels of effort to obtain reinforcers, and have important implications for understanding the normal function of the midbrain dopamine system.Fil: Hutchison, M. A.. National Institutes of Health; Estados UnidosFil: Gu, X.. National Institutes of Health; Estados UnidosFil: Adrover, Martín Federico. National Institutes of Health; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Lee, M. R.. National Institutes of Health; Estados UnidosFil: Hnasko, T. S.. University of California at San Diego; Estados UnidosFil: Alvarez, V. A.. National Institutes of Health; Estados UnidosFil: Lu, W.. National Institutes of Health; Estados Unido

    Protein Conformation and Supercharging with DMSO from Aqueous Solution

    Get PDF
    The efficacy of dimethyl sulfoxide (DMSO) as a supercharging reagent for protein ions formed by electrospray ionization from aqueous solution and the mechanism for supercharging were investigated. Addition of small amounts of DMSO to aqueous solutions containing hen egg white lysozyme or equine myoglobin results in a lowering of charge, whereas a significant increase in charge occurs at higher concentrations. Results from both near-UV circular dichroism spectroscopy and solution-phase hydrogen/deuterium exchange mass spectrometry indicate that DMSO causes a compaction of the native structure of these proteins at low concentration, but significant unfolding occurs at ~63% and ~43% DMSO for lysozyme and myoglobin, respectively. The DMSO concentrations required to denature these two proteins in bulk solution are ~3–5 times higher than the concentrations required for the onset of supercharging, consistent with a significantly increased concentration of this high boiling point supercharging reagent in the ESI droplet as preferential evaporation of water occurs. DMSO is slightly more basic than m-nitrobenzyl alcohol and sulfolane, two other supercharging reagents, based on calculated proton affinity and gas-phase basicity values both at the B3LYP and MP2 levels of theory, and all three of these supercharging reagents are significantly more basic than water. These results provide additional evidence that the origin of supercharging from aqueous solution is the result of chemical and/or thermal denaturation that occurs in the ESI droplet as the concentration of these supercharging reagents increases, and that proton transfer reactivity does not play a significant role in the charge enhancement observed
    • …
    corecore