
Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins
John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Johann George,

Natalija Gucevska, Mark Harman, Maria Lomeli, Simon M Lucas, Erik Meijer, Steve Omohundro,
Rubmary Rojas, Silvia Sapora, Jie M. Zhang, Norm Zhou∗

FACEBOOK Inc.
USA

ABSTRACT
A cyber–cyber digital twin is a simulation of a software system.
By contrast, a cyber–physical digital twin is a simulation of a non-
software (physical) system. Although cyber–physical digital twins
have received a lot of recent attention, their cyber–cyber counter-
parts have been comparatively overlooked. In this paper we show
how the unique properties of cyber–cyber digital twins open up
exciting opportunities for research and development. Like all digital
twins, the cyber–cyber digital twin is both informed by and informs
the behaviour of the twin it simulates. It is therefore a software
system that simulates another software system, making it concep-
tually truly a twin, blurring the distinction between the simulated
and the simulator. Cyber–cyber digital twins can be twins of other
cyber–cyber digital twins, leading to a hierarchy of twins. As we
shall see, these apparently philosophical observations have practi-
cal ramifications for the design, implementation and deployment
of digital twins at Facebook.

CCS CONCEPTS
• Computing methodologies→ Intelligent agents.

KEYWORDS
Web Enabled Simulation, Digital Twins

ACM Reference Format:
John Ahlgren, Kinga Bojarczuk, Sophia Drossopoulou, Inna Dvortsova, Jo-
hann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Simon M Lu-
cas, ErikMeijer, SteveOmohundro, Rubmary Rojas, Silvia Sapora, JieM. Zhang,
Norm Zhou. 2021. Facebook’s Cyber–Cyber and Cyber–Physical Digital
Twins. In Evaluation and Assessment in Software Engineering (EASE 2021),
June 21–23, 2021, Trondheim, Norway. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3463274.3463275

∗Author order is alphabetical. Correspondence to Mark Harman (markharman@fb.com).
Mark Harman’s scientific work is part supported by European Research Council (ERC),
Advanced Fellowship grant number 741278; Evolutionary Program Improvement
(EPIC) which is run out of University College London, where he is part time professor.
He is a full time Research Scientist at Facebook. Sophia Drossopoulou is a full time
Engineering manager at Facebook, and also a part time professor at Imperial College,
London. Simon Lucas is currently a full time Research Scientist at Facebook and also a
part time professor at Queen Mary University of London

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EASE 2021, June 21–23, 2021, Trondheim, Norway
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9053-8/21/06.
https://doi.org/10.1145/3463274.3463275

1 INTRODUCTION
Simulation is increasingly becoming one of the most important ap-
plications of software engineering, yet it has received comparatively
little attention from the software engineering research community.
The importance of simulation is hard to overstate: many, if not all,
of the most important challenges we face as a species are being
tackled by simulation-based solutions. For example, simulation is
increasingly used for prediction and decision-making in economics
[52], climate change and weather prediction [30], traffic safety [4],
and, most recently, with the farthest possible impact, our response
to the COVID19 pandemic [1].

In this paper we outline our on-going development of WW, a
simulation of Facebook’s WWW platform. The WW system can
be thought of as a cyber–cyber digital twin of Facebook’s WWW
platform and infrastructure. That is, it is a simulation of the WWW
platform that is both informed by and informs the behaviour of
that platform. There has been much recent development of digital
twins, with which the simulation process is extended so that the
simulation and the simulated system automatically interact with
one another. However, that research agenda is confined to cyber–
physical digital twins; software systems that simulate real physical
engineering systems and processes. Despite the fact that the digital
twin is a software artefact, the potential for cyber–cyber digital
twins, in which the simulated system is also a software system or
process, remains relatively under-exploited and under-explored.

In this paper we argue that there is considerable potential for
software engineering research to extend from cyber–physical dig-
ital twins to cyber–cyber digital twins. This is not merely ‘yet
another application of digital twins’; the fact that the two twins are
constructed out of the same software engineering material makes
cyber–cyber digital twins a fundamentally different research para-
digm compared to cyber–physical digital twins. In particular,

(1) Complete malleability: The physical system in a cyber–
physical digital twin can only partially adapt. Furthermore,
when such a physical system does adapt, it is typically only
the software components of the physical system that can
be changed automatically. For example, the configuration
parameters of an automobile engine controller can be au-
tomatically adapted in response to feedback from a cyber
twin, but the bodywork of the automobile cannot. By con-
trast, the cyber system in a cyber–cyber digital twin can
completely adapt in response to its twin; theoretically, no
change is unimplementable.

(2) True twins: Cyber–cyber digital twins truly are twins; it
may become hard to tell which is the simulator and which
is the simulated, because either could inform or affect the

https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://doi.org/10.1145/3463274.3463275
https://doi.org/10.1145/3463274.3463275


EASE 2021, June 21–23, 2021, Trondheim, Norway Ahlgren et al.

other, causing it to adapt any or all of its components, due
to complete malleability.

(3) Simulation Hierarchy: Since a cyber–cyber digital twin
can, itself, also have a digital twin, we can create recursive
hierarchies of cyber𝑁 digital twins.

A digital twin can predict a system’s response to safety-critical
events and uncover previously unknown issues before they become
critical. Furthermore, it allows the replay of critical events that oc-
curred in the past in order to assess whether prevention strategies
could have mitigated these events. This is an example where the
simulation paradigm goes beyond the traditional software engi-
neering testing paradigm; unit and integration tests are designed
to uncover known failure modes, whereas simulation allows the
whole system to be tested.

This paper covers three principal aspects of cyber–cyber digital
twin deployments:

(1) Scalability: How can we simulate salient behavioural prop-
erties of human–platform interactions in a large complex
software platform? We consider two principal aspects of
scalability:

(a) Execution Scalability: can we compute results quickly
enough to act on them using reasonable computational
resources?

(b) Developmental Scalability: can we develop new simu-
lations quickly enough to take action in response to new
behaviours?

(2) Behaviour: How can we simulate human behaviour realis-
tically enough to make actionable predictions and recom-
mendations?

(3) Verification and Validation: Cyber–cyber digital twins
bring up many natural verification and validation questions.
For example

(a) Verification: Towhat degree canwe verify our confidence
that the simulation captures the desired salient properties
with sufficient faithfulness for the intended digital twin
applications?

(b) Validation: How canwe ensure that results of simulations
are valid in order to address the questions, predictions and
interventions in mind? This is especially challenging in sit-
uations where we aremodelling counterfactual behaviours
never previously witnessed

These three challenges lie at the heart of the technical and sci-
entific problems we face in developing a scalable, high fidelity
simulation able to produce actionable predictions and conclusions.
We believe that tackling them will have a profound impact on both
social media and on the wider application of cyber–cyber digital
twins to general complex systems.

In this paper, we describe how we developed and deployed a
hierarchy of digital twin simulations. Each twin occupies a position
on a spectrum of engineering trade-offs allowing us to tackle execu-
tion scalability by trading simulation fidelity for speed. We describe
the architecture of the online real-time simulation layer of the WW
hierarchy, and how the other layers of hierarchy are related to it.
Our experience is that this architecture is helping us to achieve
reasonable developmental scalability. We also briefly outline our
hybrid approach to semi-realistic user behaviour imitation and our

approach to tackling the problem of verification and validation of
simulation outcomes.

The paper concludes with a set of open challenges for both
the scientific and software engineering communities. We describe
applications to software engineering which promise many future
benefits.

2 THE SIMULATION HIERARCHY
Figure 1 depicts the WW Simulation Hierarchy. Human users and
the devices they use to interact with Facebook make up the physical
aspects of the hierarchy. All other entities in the figure are digi-
tal entities, and relationships between them are thus cyber–cyber
relationships.

The lower rectangle depicts the Facebook platform itself, con-
sidering it conceptually to be a cyber physical simulation of social
interaction. In some ways, Facebook itself might be considered a
digital twin of physical social interactions, but we leave further
study of this perspective to future work. Our focus for this paper
are the cyber–cyber digital twins that we have built on top of the
Facebook platform.

The upper rectangle depicts the WW system, a simulation plat-
form which rests on top of the Facebook platform itself. WW con-
sists of the bots (simulating real users), and a simulation of the
Facebook platform, chosen at one of several levels of precision;
here online, offline/synthetic, and emulated. The simulations of the
Facebook platform are constructed through a chain of digital twins,
thereby forming a simulation hierarchy. In some ways, Facebook
itself might be considered a digital twin of physical social inter-
actions, but we leave further study of this perspective to future
work.

As can be seen from Figure 1, the relationships between bots,
real users, the Facebook platform and its various simulations in the
simulation hierarchy collectively form a commutative diagram. In
future work we hope to exploit this observation further, through
rigorous informal and formal verification and validation obligations
which are best formulated using this kind of commutative diagram.
For example, suppose we have verified that the emulator correctly
captures an important property, 𝑃 , of the offline simulation. Now,
when we have bots used in the offline simulation that maintain 𝑃 ,
when transformed into bots in the emulator, we know that emulator
interactions with the bots, and offline mode interactions with the
bots should behave identically with respect to property 𝑃 .

The chain of cyber–cyber simulations is represented in the right–
hand–side of the diagram by a four-component pyramid, in which
each component is a digital twin. The upper digital twins of the
pyramid simulate the behaviour of those below, while the base of
the pyramid is also a cyber–physical digital twin; the Facebook
platform itself.

Onlinemode. Immediately above the Facebook platform itself, we
find theWWonlinemode. This is ourmost faithful simulation of the
Facebook WWW platform. It is ‘faithful’ in the sense that, although
the behaviour of the bots is a simulation (of real user behaviours),
the actions and observations in which these bots engage is executed
directly on the real Facebook platform itself. In this way, online
mode is a cyber–cyber digital twin, but it is also a web enabled
simulation [2]. It differs crucially from conventional simulations



Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins EASE 2021, June 21–23, 2021, Trondheim, Norway

[30, 32, 52] because the simulated process can be digitally executed.
By contrast, an engine simulation, for example, must execute a
model of the physical engine.

Offline mode. The WW offline simulation is a cyber–cyber dig-
ital twin of the online simulation. In offline mode, WW does not
necessarily execute all of the bots’ actions, nor provide all of the ob-
servations to bots that are available on the Facebook platform itself.
Rather, offline simulations either synthetically generate content, so-
cial graph topology, and bot state (simulated historical actions), or
they recapture and cache online simulation results for subsequent
offline reuse. These offline modes have many advantages:

(1) Speed: Offline simulations execute orders ofmagnitude faster
than their online counterparts

(2) Test–friendliness: Offline execution supports verification
and validation of simulation results, because it reduces test
flakiness [3].

(3) Counterfactual Support: We can combine synthetic net-
work topologies with simulated content and bot state infor-
mation to create virtual worlds. These virtual worlds share
some properties with the real world, but also allow us to
explore behaviour in counterfactual worlds in which we
mutate some or all of the social graph network topology,
content and bot state.

(4) Privacy–safety: For simulations of sensitive aspects that
would not be privacy-safe in online mode, the synthetic
simulation mode allows us to perform simulations that are
privacy-safe by construction.

These advantages may come at the expense of losing some fi-
delity of the simulation results, compared to those that would be
experienced in reality. Therefore, the simulation hierarchy intro-
duces classical engineering trade-offs between precision and speed.

Emulation. While offlinemode improves simulation performance
substantially, it is not sufficient for some situations. Many of the
applications of WW digital twins aim to improve Facebook’s infras-
tructure and apps in a way that balances protection of normal users
and inhibition of malicious users. To tackle this technical challenge,
we use an approach reminiscent of genetic improvement [43] that
we call ‘mechanism design’ [2]. Mechanism design uses compu-
tational search [24] over the space of product changes, guided by
fitness functions that capture the impact of the product change on
normal and harmful behaviour.

Fitness Computation. Each fitness computation is, itself, an entire
simulation story. Fitness assesses the effect of a product change on
a particular kind of behaviour, as experienced by the bots. Effective
computational search typically requires a large number of fitness
evaluations [27]. This motivated us to develop faster simulations
than can be achieved in either online or offline mode. In order
to meet these high performance requirements, the top level of
the simulation pyramid uses emulation. Emulation uses machine
learning to create high performance black box predictive models of
the behaviour of lower levels of the pyramid.

In summary. WW employs two strands of simulation: The first
strand, to the left-hand side of the diagram, is a cyber–physical

Figure 1: The WW Simulation Hierarchy: a recursive chain
of digital twins that trade simulation precision for speed.

simulation of real users by bots. The second strand, to the right-
hand side of the diagram, is a chain of cyber–cyber simulations,
which simulate the Facebook platform. The interaction between
the bots and the simulated Facebook platform is a cyber–cyber
interactionwhich simulates the cyber–physical interaction between
real Facebook users and the real Facebook platform.

3 VERIFICATION AND VALIDATION OF
SIMULATION OUTCOMES

Simulations need to be verified and validated before decisions can
be based on them. The WW verification and validation framework
is built around 4 properties: fidelity, regression, isolation and cor-
rectness (FRIC). We developed the MIA[3] testing framework to
test the FRIC properties.

We tackle all four properties using the full panoply of software
testing techniques, including mutation [29], regression [58], meta-
morphic [3], and property-based [14] techniques. MIA currently
automates end–to–end, regression and metamorphic testing (end–
to-end and regression testing are formulated, implemented and
deployed as special cases of metamorphic testing [3]). We are cur-
rently extending MIA to handle other types of testing.
Fidelity: There are two aspects of fidelity that we test: simulation-
simulation fidelity and reality-simulation fidelity.

Simulation-simulation fidelity can sometimes be constructed
without real-world data, as a consistency check between different
cyber–cyber digital twins. Reality–simulation fidelity measures the
closeness of WW simulation results to reality. While simulation–
simulation fidelity captures an internal consistency of the hierarchy,
we cannot be sure that the results we are checking are valid (that
they matter) without reality–simulation fidelity.

In some cases, measurement of reality-simulation fidelity proves
to be straight forward. For example, when simulating an event
sequence that previously occurred in reality, we have the ground
truth from earlier observations. However, counterfactual simula-
tions (which use newer versions of the Facebook platform not
previously deployed) naturally raise a profound question about the
meaning of fidelity: to what extent can we determine faithfulness



EASE 2021, June 21–23, 2021, Trondheim, Norway Ahlgren et al.

of simulation to reality when aspects of the simulated situations
have never been previously witnessed?
Regression: At Facebook, any code change is called a ‘diff’. Testing
performed on individual diffs when they are submitted for code
review is called ’per diff’ testing. WW platform development occurs
as a sequence of diffs and it is very useful to perform regression
testing on each diff. Regression testing is clearly useful for per-
diff mode testing of changes to WW code. When this kind of diff
test fails, it indicates that the proposed code changes would alter
simulation results.

Not only do we regression test the WW code, we also ‘diff sniff’
other Facebook code changes entirely unrelated to WW itself. We
use the phrase ‘diff sniff’ to refer to a regression test on an arbitrary
diff which is not necessarily a WW diff. A diff sniff regression
test runs a short simulation on both the current code and on the
proposed code change and compares them to ’sniff’ for problematic
changes. If the regression test fails, it means that the diff disrupted
the behaviour of WW bots. This, in turn, means that the diff is
likely to disrupt real users, and could indicate a serious bug.

This diff sniff mode exploits the fact that our test involves sim-
ulations and, as such, allows us to deploy social testing [2] on all
diffs that might disrupt users’ normal behaviours. For example, a
simulation that involves a bot community sending and responding
to messages can uncover potential social bugs in diffs that change
Facebook’s messaging infrastructure.
Isolation: Bots must not interact with normal users. The WW
framework has systems in place to ensure that bots remain isolated
from real users [2]. Specifically, we built WW to have inherent
isolation of bots by design and also encase the bots in a privacy layer
that further traps any potential to bleed through from bot behaviour
to production. However, isolation is clearly highly important, so
we also need to adopt a ‘trust but verify’ policy with regard to
our own isolation-by-construction approach, thereby continually
testing that our systems are, indeed, separate.
Correctness: In a WW simulation, we can only execute actions
that real users are able to execute on the platform. Based on a
policy and the observations received, a bot can execute or ignore a
specific type of action. WW code errors might break the simulation
framework, might alter the behaviour of the platform, or might
cause incorrect bot actions. The current WW framework uses end–
to–end, regression and metamorphic testing to assess whether the
simulation terminates without failure [3]. We are currently working
on property-based testing [14] that will test a wider variety of
properties of a simulation including the number and types of bot
actions and the number of simulated bots.

4 REALISTIC BOTS
We refer to bots’ distinguishing attributes, such as the demographic
they simulate, as a persona. Personas specify salient characteristics
of bots such as their age, gender, and platform activity level. They
also specify aspects of a bot’s goals such as whether it is malicious
or benign.

A simulation is typically set up with a set of bot personas that
capture the particular scenario of interest. For example, if we are
interested in understanding the ability for systems to detect and

impede scamming attacks on our users, then we would set up a
simulation with scammers and benign users.

In the scamming scenario, we might implement a set of rela-
tively sophisticated scamming behaviours, captured by imitation
learning, together with a set of more simple rule–based behaviours
that capture the benign users that might become victims to such
scamming attacks.

Our bot behaviour modelling techniques range from simple ran-
dom actions tomore advanced rule-based andML-learnt behaviours.
Different techniques can coexist in the same simulation, as different
bots use different methods based on their role and persona.

The set of available personas is defined at the beginning of a
simulation, roles are then assigned to each bot according to a pre-
defined set of rules yielding a distribution comparable to the real
environment.

Figure 2: WW simulations can include bots following differ-
ent strategies. The phrase ‘Hybrid bot’ represents a mix of
strategies in a single agent.

Figure 2 depicts the four principal techniques we currently use
to train bots’ behaviours in WW, each of which we describe in more
detail below.
Random: The simplest behavioural model causes bots to execute
actions randomly from a pool of available actions. This model can
be useful in cases such as testing, where the developer may care
less about realistic behaviour than they do about code coverage.
Random behaviour also provides a useful baseline against which to
compare more intelligent and purposeful behaviours.
Rule-based: Given some basic assumptions about the goal of a
simulation, it is often possible to express the desired user behaviour
by a set of parameterised rules. The rules serve as a backbone
algorithm that captures the core of a bot’s behaviour. The agents
in a simulation often do not need to be very sophisticated for their
aggregate behaviour to lead to interesting conclusions.

Using the rule-based approach allows us to focus on one specific
aspect of behaviour. Rule–based bots are also more likely to behave
deterministically. Determinism tends to help with interpretability,
and is particularly useful for exploring extreme behaviour. Rule-
based behaviours also allow us to capture the distilled essence of
harmful behaviour, and thereby check that our systems are robust
even in the presence of such extremes.

Even if we have not witnessed such extreme behaviour, this
remains a useful integrity stress test for the cyber-physical platform.



Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins EASE 2021, June 21–23, 2021, Trondheim, Norway

Although no specific user may behave in this way, if we suitably
capture a specific behaviour of interest, this can be used to explore
mechanisms designed to either inhibit or allow that behaviour.

Rule–based bots are configured according to parameters, which
capture the specific behaviours, outlined by the overall backbone
algorithm. This allows us to parameter sweep over the specific
aspects of behaviour, under certain conditions and constraints. The
parameters in the rule-based behaviour descriptions allow us to
investigate whole areas of counterfactuals: by sweeping over a
range of parameters we can explore how well harmful behaviour
of various levels of severity is handled.
ML: Clearly, rule-based strategies alone are insufficient to capture
all of the nuanced complexities and emergent properties of social
interaction. Where more realistic behaviour is required, we have
employed Machine Learning techniques to imitate decisions made
by classes of real users. We only simulate whole classes of user
of behaviour, thereby allowing us to train a bot to imitate specific
personas, but not specific individuals.

We use sequences of actions from de–identified logs to train imi-
tation learners. We encode each action as a vector using Word2Vec
[39]. Positive samples are collected from the logs of executed ac-
tions, together with information about the context in which the
action was carried out. The context is then used to infer other
actions that could have been performed, but were not.

The model is trained to predict the next action given the context,
one positive sample (the real action) and one negative sample (the
available action that was not executed in the log). During the sim-
ulation, at each step, pairwise comparison is performed between
available choices, using scores from the ML model. The action with
the highest score according to this ranking is then executed.

Each type of action has a defined set of features that are collected
for accurate prediction. These features are sets of de–identified fea-
tures which, like all supervised training based on labelled features,
are used to train the bot to generalise to particular kinds of decision
responses. For example, a bot may need to decide which group to
join next. Groups features include when the group was created, the
number of members, the number of posts per day, etc. From these
features we can train a bot that simulates scamming behaviours
by training it to join groups with similar features to those features
that scammers, on aggregate, have tended to favour in the past.
ML–Rul–based hybrids: Our imitation learners can be substi-
tuted in a plug–and–play manner into our backbone rule-based
algorithms. This supports us in deploying hybrid approaches which
combine a role-based backbone, with different imitation learners to
capture different kinds of personas and different kinds of behaviour
patterns. Such a hybrid typically uses the rule-based algorithm for
its overall strategy, such as crawling over the platform. However,
at each step in the crawl, a number of options are available. When
a bot has a range of decisions available to it, it uses the imitation
learner in order to determine the next step.

5 FACEBOOK’S WWMICRO-SERVICE
ARCHITECTURE FOR USER SIMULATION

In theWWarchitecture, we describe the set of actions and responses
that a bot can perform its ‘simulation story’. Simulation stories can

Figure 3: The Top-LevelWWMicro Services Architecture for
Real-Time Simulation

be composed. Larger simulations can be constructed from smaller
ones.

In addition to simulating bot actions, the WW architecture sup-
ports monitoring, statistical analysis, and realtime scheduling for
high fidelity online simulations.

Figure 3 shows the top level architecture ofWW. There is a sched-
uler and an executor which interact with the Facebook environment
according to a policy.

The scheduler dispatches events at the appropriate simulation
time and is responsible for terminating simulations. The platform
policy is the ‘brain’ of the simulation and determines how bots be-
have. A WW ‘simulation story’ is defined by an initial action which
triggers a cascade of responses. Each response can trigger additional
actions which can trigger additional responses. We use a ‘plug and
play’ approach whereby different policies and environments can
be used in the same WW simulation story.

The platform policy is responsible for selecting agent actions
and for maintaining the state of the execution. Agent actions can
range from hard-coded stochastic rules to adaptive actions based
on Reinforcement Learning (RL) similar to that used in game AIs
[61]. The policy maintains bots’ ‘memory’ and is also responsible
for content replacement since environment calls are stateless. Each
action has a content placeholder like ‘<comment>’.

The interface to the Facebook environment is provided by an
API for action execution which is implemented as a WWW Thrift
service [49]. The environment service can be (re)implemented for
different platforms or as a synthetic environment, where all actions
are executed offline.

This architecture provides several advantages:
(1) Plug and play: Policies can be reused in any simulation and

different platform policies can be applied to the same WW
simulation story.

(2) Flexibility: The environment is implemented as a service
which provides the Actions API. The Environment Service
can be implemented for any platform, allowing a simulation
story to be run on different platforms.

(3) Scalability: The Environment Service is deployed on multi-
ple machines and can be scaled when needed.

6 OPEN CHALLENGES IN APPLYING
CYBER–CYBER DIGITAL TWINS TOWEB
ENABLED SIMULATION

Modelling Users: Modelling the behaviour of real users is a natu-
ral challenge in any simulation of social behaviours. We have found



EASE 2021, June 21–23, 2021, Trondheim, Norway Ahlgren et al.

a combination of rule–based approaches and decision procedures
guided by imitation learning to be effective for many use cases.
However, our work has only scratched the surface of what is re-
quired in order to simulate behaviours and complex community
interactions. Much more research is needed to accurately simulate
situations involving complex human behaviours..

We have found that, although realism is a natural goal, it is
not essential in all application areas. For example, when using
mechanisms designed to tackle harmful behaviours, we often want
to simulate the ‘distilled essence’ of the harmful behaviour. This
distilled essence is particularly useful in the early phases of the
search process to find mechanisms to counteract such behaviour.
Any mechanisms which can’t handle the most egregious examples
of a harmful behaviour can be discarded early in the search process.

However, finding interventions to tackle harmful behaviour is
inherently a multi–objective search process: while we want to add
friction to reduce the prevalence and effectiveness of harmful be-
haviours, we do notwant to impede normal user behaviour. In order
to incorporate this into the search for optimisedmechanisms, we are
naturally led to a multi-objective formulation. In such a multi objec-
tive formulation, we need to balance the impact of mechanisms on
harmful behaviours against their impact on normal behaviour. This,
in turn, requires a realistic model of normal behaviour, wherein
lies the greatest challenge. How does one best capture the normal
behaviour of users in such a way that interventions that might
disrupt their normal behaviour can be dismissed early in the search
process?
Balancing Speed and Precision: Cyber–cyber digital twins will
increasingly need to produce simulation results in real-time. Fur-
thermore, predictions which alter the real platform have to be made
ahead of real-time. These tight time constraints, coupled with the
potential need for large amounts of training data, present us with a
scalability challenge: Cyber–cyber digital twins will increasingly
need to produce simulation results in real-time. And predictions
which alter the real platform have to be made ahead of real-time?

WW addresses this challenge with the simulation hierarchy
which provides different precision and speed trade-offs for differ-
ent use cases. When optimising the outcome of multiple agents,
this approach allows us to formulate search in terms of a range
of precision-speed fitness computation choices. In the early explo-
ration phase of an optimisation algorithm, a more coarse-grained,
faster fitness can be used. This corresponds to more abstract levels
of the simulation hierarchy. As the search for mechanisms enters
the exploitation phases of the search, the algorithm can gradually
switch to fitness functions which have higher precision and higher
computation cost [35].
Validation, Verification and Testing: We need techniques to ver-
ify and test properties of simulation systems that are specifically
tailored to interactive multi-agent scenarios. Techniques from AI
assisted gameplay [56] and multi-agent system testing [31, 42] may
be relevant here, but much more work is needed to determine their
usefulness.

For example, we need to deal with unknowable oracles, and wide-
spread non-determinism, and consequently flaky tests [3]. Although
challenging, it will also be extremely beneficial to have automated
verification for cyber–cyber digital twins. This may be possible,
for example, where properties of models of a digital twin can be

proved correct. Such a property-preserving model can be used as a
surrogate for more computationally expensive alternatives.

Finally, and perhaps most important of all, we need techniques to
help understand, check and optimise validity of simulation results.
This is challenging because we are often dealingwith counterfactual
scenarios for which, even when ground truth is known, it can be
only partially relevant to validity.

7 FURTHER SOFTWARE ENGINEERING
APPLICATIONS OF CYBER–CYBER
DIGITAL TWINS

In this section we outline ways in which cyber–cyber digital twins
could be applied in four areas of current active software engineering
research. Our list is not intended to be exhaustive, but merely
illustrative.
Testing: Currently we tend to think of a testing tool as a separate
system that automatically tests the system under test [6, 9]. The
test system might report tests automatically into a continuous inte-
gration system [5]. However, we typically do not think of testing
tools as cyber–cyber digital twins that run in production alongside
the system being tested. Nevertheless, with cyber–physical digital
twins, it is increasingly common to see continuous real-time de-
ployment of the digital twin, running alongside the system under
test. In some regards, therefore, software testing research is behind
other engineering testing research in the use of digital twins as part
of an overall automated continuous testing deployment.
Automated Repair: Automated repair is gaining increasing atten-
tion from both software engineering researchers [17] and practi-
tioners [38] . However, like testing, automated repair systems are
often considered to be executed by the provider, rather than auto-
matically executed in production, and therefore implicitly invoked
by the user. Consider what a cyber–cyber digital repair twin might
look like. Such a system would automatically run in production,
and test repairs to the system under test. It would model execution
of the system under test and its repairs. It would automatically
respond to unwanted behaviour witnessed in production. It would
deploy patches to the system under test as the system executes. In
this way, the twin is to the system under test, as a personal surgeon
is to a patient; continually monitoring vital signs, and responding
with cures (fixes) when problems are uncovered.
Adaptive and Self-Managing Systems and Autonomous Sys-
tems: Adaptive autonomous systems need to be able to respond
quickly to their environment, making predictions and taking ac-
tions to respond to the problems in real time [33]. This is a perfect
setting in which to deploy a cyber–cyber digital twin, able to main-
tain and adapt its own model of the system, and to respond to
changes by adapting that system, autonomously, as the two twins
execute in parallel. The twins respond to the world together in
a technological embrace that enables one twin to simulate in or-
der to explore counterfactual variations of previously witnessed
behaviour, during downtime when its twin would otherwise be
relatively inactive [26].

This has been referred to as the ‘dreaming phones’ [26], because
the simulation of smart phone optimisations to be deployed the
next day could take place overnight, while the phone is charging,
reusing the phone’s computational resources for the simulation



Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins EASE 2021, June 21–23, 2021, Trondheim, Norway

overnight; the phone is essentially ‘dreaming’ about the day that
just occurred.
Modern Code Review: It is increasingly common to think of tools
that assist code review as bots [51] that, like engineers, comment
on code using the same continuous integration interfaces used by
human engineers [5, 13]. Taking this a step further, we could imag-
ine a cyber–cyber digital twin that plays the role of a maintainers’
assistant [54].

Such an assistant would be a full member of the team, in the
sense that the assistant would be able to upload code for review
and to respond to code review feedback from humans and other
bots, as well as commenting on code as a reviewer. The assistant
would maintain a mental model of the system being developed,
and would use this to take measurements and recommend changes,
and also comment on other engineers’ changes. Like any other
member of the team, this assistant would have particular skills
and attributes specific to its background and training. This system
might lack a lot of the context that human engineers would bring
to the development and review process. In compensation, however,
the bot would be able to perform meticulous repeated experimental
analyses in order to provide comprehensive scientific evidence to
back up its claims.

8 RELATEDWORK
We have previously discussed the wide range of research related to
Web Enabled Simulation [2] including Multi-Agent Reinforcement
Learning [12], Search-Based Software Engineering [25], and Auto-
mated Mechanism Design [48]. These topics are also relevant here,
but we focus on the work most related to digital-twins [44].

While cyber–cyber digital twins are a new concept1, many of
the cyber–physical digital twin insights are also relevant to them.
Digital Twins were first described by Grieves in 2002 in the context
of Product Lifecycle Management [7] [18] [19]. This model included
a real space, a virtual space, and two-way communication between
them to keep them synchronized.

Digital twins have already been deployed in healthcare, meteo-
rology, manufacturing, education, smart cities, transport and the
energy sector [44]. Singapore and other ‘smart cities’ have created
digital twins to manage roadways, pedestrian traffic, energy use
and other city functions [36]. The ultimate digital twin is an EU
plan for a digital twin of the entire earth [8].

For social media, successful prediction enables features to be
chosen that maximize social good and user satisfaction. This kind
of optimization may require robust models of normal human users.
To test the system’s response to extreme circumstances, it is also
useful2 to model aberrant human behaviours, or to test against
increasingly smart malicious bot AI.

1They are mentioned as cyber-digital twins in this interview:
https://siliconangle.com/2020/02/26/qa-accenture-creates-cyber-digital-twins-
simulate-potential-attack-scenarios-rsac/ but we are not aware of any other previous
publications on the topic. We prefer the term ‘cyber–cyber’ over ‘cyber-digital’
because it emphasises the composability that naturally leads to the the many unique
properties of cyber–cyber digital twins, such as the recursive simulation hierarchy
and the twins’ inherent maximal adaptivity.
2https://datadome.co/bot-management-protection/bot-detection-how-to-identify-
bot-traffic-to-your-website/

8.1 Digital twins in healthcare
Digital twin technology for healthcare could fulfil the goals of per-
sonalised medicine by enabling predictive medicine, where disease
can be predicted and stopped before it happens [11].

Data-driven and rule–based mathematical models have been
used in conjunction to determine effective interventions [23, 34, 37,
46, 59]. There are similarities between digital twins from engineer-
ing paradigms and those applied to personalised healthcare. There
are also some marked differences with respect to the engineering
paradigm. For example, patients’ health can be continuously moni-
tored via wearable devices [22]. However, direct intervention on a
patient is clearly more problematic than it would be in the purely
engineering paradigm. Instead, healthcare digital twins tend to aim
at supporting the engineering of a healthy status via recommenda-
tions and early identification of upcoming disease states [10, 11].
Such healthcare–facing digital twins are not fully automated.

8.2 Simulation for Recommender Systems
In 2004, MySpace3 became the first social media site to reach a
million users. Facebook first became available to the general public
in 2006 and now has 2.8 billion4 monthly active users. There are
now wide range of social media sites5, yet none has yet built a full
cyber–cyber digital twin. Nevertheless, many sites now use online
experiments and simulations to improve their services6.

Recommender systems allow social media platforms to select
the pages, news stories, ads, groups and friend suggestions to show
to users [15]. Simulation has been used to design and test recom-
mender systems and to model their social impact [57].

The first recommender systems were based on ‘collaborative fil-
tering’ [16]. Currently, recommender systems use advanced neural
networks and graph algorithms [55] and incorporate a richer rec-
ommendation context. However, the current generation of recom-
mender systems remain relatively ‘myopic’; focusing on individual
recommendations rather than on optimizing for impact over time.
The opportunities for better recommendations are well understood,
though the field remains wide open for improvement [50].

The ‘Reco-gym’ system [45] is a simulation test environment for
reinforcement-learning based recommender systems. The creators
hope that it will stimulate the kind of advancement for recom-
menders that the OpenAI Gym did for general reinforcement learn-
ing. Two other recent examples include a simulator for evaluating
conversational recommender systems [60] and the first-generation
‘RecSim’ platform for testing reinforcement learning based recom-
mender systems [28].

Recommender systems have also been blamed for various kinds
of negative social impact: radicalization, polarization, addiction,
and the prevalence of ‘click-bait’ headlines [40] [53]. Simulation is
being used to understand these phenomena and to create advanced
recommender systems that address the issues. For example, the
recent ‘RecSim NG’ system [41] simulates content providers in
addition to users and studies the impact of their incentives under
different recommender policies.

3https://en.wikipedia.org/wiki/Myspace
4https://en.wikipedia.org/wiki/Facebook
5https://en.wikipedia.org/wiki/List_of_social_networking_services
6https://hbr.org/2017/09/the-surprising-power-of-online-experiments

https://datadome.co/bot-management-protection/bot-detection-how-to-identify-bot-traffic-to-your-website/
https://datadome.co/bot-management-protection/bot-detection-how-to-identify-bot-traffic-to-your-website/
https://en.wikipedia.org/wiki/Myspace
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/List_of_social_networking_services
https://hbr.org/2017/09/the-surprising-power-of-online-experiments


EASE 2021, June 21–23, 2021, Trondheim, Norway Ahlgren et al.

8.3 Game Simulations and Learned Models
In the case of a cyber–cyber digital twin, we already have the
true model implemented in software, so one may question the
relevance of learning real–world models. However, for many use
cases, the software platform has many restrictions which make
experimentation difficult or impossible and indeed create the need
for a twin: these are mostly related to speed, security (it can be
hard to decouple some aspects of the platform from real users) and
flexibility.

Hence, learning a model of the platform may provide a useful
alternative to writing the software for a high-level model. Impres-
sive progress has been made in learning game models [20] [21] [47].
Whether these methods can scale to the challenge of learning digital
twins remains an open question. When learning a game model, the
agent is in control of its interactions with the environment, and
may try risky actions without bad consequences. This allows it to
quickly learn circumstances in which specific actions are impos-
sible; a luxury we often cannot afford when learning models of
real-world systems.

However, social media platforms have vast inflows of data from
which to train bots, thereby facilitating sample efficiency. Another
very practical approach is to start with a hand-programmed high-
level model and learn the parameters of the model by probing
the system. This has the advantage of being well understood, and
still open to direct counterfactual experimentation and relatively
efficient adversarial learning (e.g. to develop platform variants that
limit bad actors). Hence an engineering approach that mixes hand-
designed and learned components offers great promise, and this is
already a significant line of research7.

REFERENCES
[1] David Adam. 2020. Special report: The simulations driving the world’s response

to COVID-19. Nature (April 2020).
[2] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna

Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Ralf Laemmel,
Erik Meijer, Silvia Sapora, and Justin Spahr-Summers. 2020. WES: Agent-based
User Interaction Simulation on Real Infrastructure. In GI @ ICSE 2020, Shin
Yoo, Justyna Petke, Westley Weimer, and Bobby R. Bruce (Eds.). ACM, 276–284.
https://doi.org/doi:10.1145/3387940.3392089 Invited Keynote.

[3] John Ahlgren, Maria Eugenia Berezin, Kinga Bojarczuk, Elena Dulskyte, Inna
Dvortsova, Johann George, Natalija Gucevska, Mark Harman, Maria Lomeli, Erik
Meijer, Silvia Sapora, and Justin Spahr-Summers. 2021. Testing Web Enabled
Simulation at Scale Using Metamorphic Testing. In International Conference on
Software Engineering (ICSE) Software Engineering in Practice (SEIP) track. Virtual.

[4] Saif Al-Sultan, Moath M. Al-Doori, Ali H. Al-Bayatti, and Hussien Zedan. 2014.
A comprehensive survey on vehicular Ad Hoc network. Journal of Network and
Computer Applications 37 (2014), 380 – 392.

[5] Nadia Alshahwan, Xinbo Gao, Mark Harman, Yue Jia, Ke Mao, Alexander Mols,
Taijin Tei, and Ilya Zorin. 2018. Deploying Search Based Software Engineering
with Sapienz at Facebook (keynote paper). In 10𝑡ℎ International Symposium
on Search Based Software Engineering (SSBSE 2018). Montpellier, France, 3–45.
Springer LNCS 11036.

[6] Saswat Anand, Antonia Bertolino, Edmund Burke, Tsong Yueh Chen, John Clark,
Myra B. Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, Jenny
Li, Phil McMinn, and Hong Zhu. 2013. An orchestrated survey of methodologies
for automated software test case generation. Journal of Systems and Software 86,
8 (August 2013), 1978–2001.

[7] B. R. Barricelli, E. Casiraghi, and D. Fogli. 2019. A Survey on Digital Twin:
Definitions, Characteristics, Applications, and Design Implications. IEEE Access
7 (2019), 167653–167671. https://doi.org/10.1109/ACCESS.2019.2953499

[8] Peter Bauer, Bjorn Stevens, and Wilco Hazeleger. 2021. A digital twin of Earth
for the green transition. Nature Climate Change 11 (2021), 80 – 83.

7Also see JuliaCon 2020 tutorial: Doing Scientific Machine Learning (SciML) with Julia:
https://www.youtube.com/watch?v=QwVO0Xh2Hbg

[9] Antonia Bertolino. 2007. Software testing research: Achievements, challenges,
dreams. In Future of Software Engineering (FOSE’07). IEEE, 85–103.

[10] Saul Blecker, Stuart Katz, LI Horwitz, Gilad Kuperman, H Park, A Gold, and David
Sontag. 2016. Comparison of approaches for heart failure case identification from
electronic health record data. JAMA Cardiology 1, 9 (2016), 1014–1020.

[11] Koen Bruynseels, Filippo Santoni de Sio, and Jeroen van den Hoven. 2018. Digital
Twins in Health Care: Ethical Implications of an Emerging Engineering Paradigm.
Frontiers in Genetics 9 (2018), 31. https://doi.org/10.3389/fgene.2018.00031

[12] L. Busoniu, R. Babuska, and B. De Schutter. 2008. A Comprehensive Survey of
Multiagent Reinforcement Learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172. https:
//doi.org/10.1109/TSMCC.2007.913919

[13] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. W.
O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez. 2015. Moving
Fast with Software Verification. In NASA Formal Methods - 7th International
Symposium. 3–11.

[14] Koen Claessen and John Hughes. 2002. Testing monadic code with QuickCheck.
ACM SIGPLAN Notices 37, 12 (2002), 47–59.

[15] Magdalini Eirinaki, Jerry Gao, Iraklis Varlamis, and Konstantinos Tserpes. 2018.
Recommender Systems for Large-Scale Social Networks: A review of challenges
and solutions. Future Generation Computer Systems 78 (2018), 413–418. https:
//doi.org/10.1016/j.future.2017.09.015

[16] David Goldberg, David Nichols, Brian M. Oki, and Douglas Terry. 1992. Using
Collaborative Filtering to Weave an Information Tapestry. Commun. ACM 35, 12
(Dec. 1992), 61–70. https://doi.org/10.1145/138859.138867

[17] Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. 2019. Automated
program repair. Commun. ACM 62, 12 (2019), 56–65.

[18] Michael Grieves. 2015. Digital Twin: Manufacturing Excellence through Virtual
Factory Replication. (2015).

[19] Michael Grieves and John Vickers. 2017. Digital Twin: Mitigating Unpredictable,
Undesirable Emergent Behavior in Complex Systems. In Transdisciplinary Per-
spectives on Complex Systems: New Findings and Approaches, Franz-Josef Kahlen,
Shannon Flumerfelt, and Anabela Alves (Eds.). Springer International Publishing,
85–113. https://doi.org/10.1007/978-3-319-38756-7_4

[20] David Ha and Jürgen Schmidhuber. 2018. World Models. CoRR abs/1803.10122
(2018). arXiv:1803.10122 http://arxiv.org/abs/1803.10122

[21] Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi.
2019. Dream to Control: Learning Behaviors by Latent Imagination. CoRR
abs/1912.01603 (2019). arXiv:1912.01603 http://arxiv.org/abs/1912.01603

[22] Thurow K Haghi M and Stoll R. 2017. Wearable Devices in Medical Internet of
Things: Scientific Research and Commercially Available Devices. Healthc Inform
Res. 1 (2017). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334130/

[23] Yoni Halpern, Steven Horng, and David Sontag. 2016. Clinical Tagging with Joint
Probabilistic Models. In Proceedings of the 1st Machine Learning for Healthcare
Conference (Proceedings of Machine Learning Research, Vol. 56), Finale Doshi-Velez,
Jim Fackler, David Kale, Byron Wallace, and Jenna Wiens (Eds.). 209–225.

[24] Mark Harman. 2007. The current state and future of Search Based Software
Engineering. In Future of Software Engineering 2007, Lionel Briand and Alexander
Wolf (Eds.). IEEE Computer Society Press, Los Alamitos, California, USA. This
volume.

[25] Mark Harman, Yue Jia, Jens Krinke, Bill Langdon, Justyna Petke, and Yuanyuan
Zhang. 2014. Search based software engineering for software product line en-
gineering: a survey and directions for future work (Keynote Paper). In 18𝑡ℎ
International Software Product Line Conference (SPLC 14). Florence, Italy, 5–18.

[26] Mark Harman, Yue Jia, William B. Langdon, Justyna Petke, Iman Hemati
Moghadam, Shin Yoo, and FanWu. 2014. Genetic Improvement for Adaptive Soft-
ware Engineering (Keynote Paper). In 9𝑡ℎ International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS 2014) (Hyderabad,
India). ACM, New York, NY, USA, 1–4. https://doi.org/10.1145/2593929.2600116

[27] Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2012.
Search Based Software Engineering: Techniques, Taxonomy, Tutorial. In Empiri-
cal software engineering and verification: LASER 2009-2010, Bertrand Meyer and
Martin Nordio (Eds.). Springer, 1–59. LNCS 7007.

[28] Eugene Ie, Chih-wei Hsu, Martin Mladenov, Vihan Jain, Sanmit Narvekar, Jing
Wang, Rui Wu, and Craig Boutilier. 2019. RecSim: A Configurable Simulation
Platform for Recommender Systems. arXiv e-prints (Sep 2019), arXiv:1909.04847.

[29] Yue Jia and Mark Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering 37, 5 (September–
October 2011), 649 – 678.

[30] Gregory L Johnson, Clayton L Hanson, Stuart P Hardegree, and Edward B Ballard.
1996. Stochastic weather simulation: Overview and analysis of two commonly
used models. Journal of Applied Meteorology 35, 10 (1996), 1878–1896.

[31] Sabrine Kalboussi, Slim Bechikh, Marouane Kessentini, and Lamjed Ben Said.
2013. On the Influence of the Number of Objectives in Evolutionary Autonomous
Software Agent Testing. In 25th International Conference on Tools with Artificial
Intelligence (ICTAI ’13). IEEE, Herndon, VA, USA, 229–234.

https://doi.org/doi:10.1145/3387940.3392089
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.3389/fgene.2018.00031
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1016/j.future.2017.09.015
https://doi.org/10.1016/j.future.2017.09.015
https://doi.org/10.1145/138859.138867
https://doi.org/10.1007/978-3-319-38756-7_4
https://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
https://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5334130/
https://doi.org/10.1145/2593929.2600116


Facebook’s Cyber–Cyber and Cyber–Physical Digital Twins EASE 2021, June 21–23, 2021, Trondheim, Norway

[32] Jack PC Kleijnen. 2005. Supply chain simulation tools and techniques: a survey.
International journal of simulation and process modelling 1, 1-2 (2005), 82–89.

[33] Christian Krupitzer, Felix Maximilian Roth, Sebastian Van Syckel, Gregor Schiele,
and Christian Becker. 2015. A survey on engineering approaches for self-adaptive
systems. Pervasive Mobile Computing 17 (2015), 184–206.

[34] Trent Kyono, Fiona J. Gilbert, and Mihaela van der Schaar. 2019. Multi-view
Multi-task Learning for Improving Autonomous Mammogram Diagnosis. In
Proceedings of the 4th Machine Learning for Healthcare Conference. PMLR, 571–
591. http://proceedings.mlr.press/v106/kyono19a.html

[35] Benjamin Letham and Eytan Bakshy. 2019. Bayesian Optimization for Policy
Search via Online-Offline Experimentation. Journal of Machine Learning Research
20 (2019), 145:1–145:30.

[36] Patricia Liceras. 2019. Singapore experiments with its digital twin to improve
city life. https://www.smartcitylab.com/blog/digital-transformation/singapore-
experiments-with-its-digital-twin-to-improve-city-life/

[37] Bryan Lim and Mihaela van der Schaar. 2018. Disease-Atlas: Navigating Disease
Trajectories with Deep Learning. arXiv:1803.10254 [stat.ML]

[38] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,
Ke Mao, Alexander Mols, and Andrew Scott. 2019. SapFix: Automated End-to-
End Repair at Scale. In International Conference on Software Engineering (ICSE)
Software Engineering in Practice (SEIP) track. Montreal, Canada.

[39] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
arXiv:1301.3781 http://arxiv.org/abs/1301.3781

[40] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. 2021. Recommender
systems and their ethical challenges. AI and Society 35 (2021), 957 – 967.

[41] Martin Mladenov, Chih-Wei Hsu, Vihan Jain, Eugene Ie, Christopher Colby,
Nicolas Mayoraz, Hubert Pham, Dustin Tran, Ivan Vendrov, and Craig Boutilier.
2021. RecSim NG: Toward Principled Uncertainty Modeling for Recommender
Ecosystems. arXiv:2103.08057 [cs] (March 2021). http://arxiv.org/abs/2103.08057
arXiv: 2103.08057.

[42] Cu Nguyen, Anna Perini, Paolo Tonella, Simon Miles, Mark Harman, and Michael
Luck. 2009. Evolutionary Testing of Autonomous Software Agents. In 8𝑡ℎ In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS
2009). Budapest, Hungary, 521–528.

[43] Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
a Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(June 2018), 415–432. https://doi.org/doi:10.1109/TEVC.2017.2693219

[44] A. Rasheed, O. San, and T. Kvamsdal. 2020. Digital Twin: Values, Challenges
and Enablers From a Modeling Perspective. 8 (2020), 21980–22012. https:
//doi.org/10.1109/ACCESS.2020.2970143 Conference Name: IEEE Access.

[45] David Rohde, Stephen Bonner, Travis Dunlop, Flavian Vasile, and Alexandros
Karatzoglou. 2018. RecoGym: A Reinforcement Learning Environment for the
problem of Product Recommendation in Online Advertising. arXiv:1808.00720
[cs] (Sept. 2018). http://arxiv.org/abs/1808.00720 arXiv: 1808.00720.

[46] Maya Rotmensch, Yoni Halpern, Abdulhakim Tlimat, Steven Horng, and David
Sontag. 2017. Learning a Health Knowledge Graph from Electronic Medical
Records. Nature Scientific Reports 7, 1 (2017), 5994.

[47] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy P. Lillicrap, and David Silver. 2019. Mastering Atari, Go,
Chess and Shogi by Planning with a Learned Model. CoRR abs/1911.08265 (2019).
arXiv:1911.08265 http://arxiv.org/abs/1911.08265

[48] Weiran Shen, Pingzhong Tang, and Song Zuo. 2019. Automated mechanism
design via neural networks. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. 215–223. https://arxiv.org/pdf/
1805.03382.pdf

[49] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. 2007. Thrift:Scalable cross-
language services implementation. Facebook white paper 5, 8 (2007), 127.

[50] B. Smith and G. Linden. 2017. Two Decades of Recommender Systems at
Amazon.com. IEEE Internet Computing 21, 03 (may 2017), 12–18. https:
//doi.org/10.1109/MIC.2017.72

[51] Margaret-Anne D. Storey and Alexey Zagalsky. 2016. Disrupting developer
productivity one bot at a time. In Proceedings of the 24th International Symposium
on Foundations of Software Engineering (FSE 2016), Seattle, WA, USA, November
13-18, 2016. ACM, 928–931.

[52] Sergio Terzi and Sergio Cavalieri. 2004. Simulation in the supply chain context:
a survey. Computers in Industry 53, 1 (2004), 3–16.

[53] WenjieWang, Fuli Feng, XiangnanHe, Hanwang Zhang, and Tat-Seng Chua. 2020.
"Click" Is Not Equal to "Like": Counterfactual Recommendation for Mitigating
Clickbait Issue. arXiv:2009.09945 [cs.IR]

[54] Martin Ward. 1999. Assembler to C Migration using the FermaT Transformation
System. In IEEE International Conference on Software Maintenance (ICSM’99)
(Oxford, UK). IEEE Computer Society Press, Los Alamitos, California, USA.

[55] Shiwen Wu, Wentao Zhang, Fei Sun, and Bin Cui. 2020. Graph Neural Networks
in Recommender Systems: A Survey. arXiv:2011.02260 [cs.IR]

[56] Geogios N Yannakakis. 2012. Game AI revisited. In Proceedings of the 9th confer-
ence on Computing Frontiers. 285–292.

[57] Sirui Yao, Yoni Halpern, Nithum Thain, Xuezhi Wang, Kang Lee, Flavien Prost,
Ed H. Chi, Jilin Chen, and Alex Beutel. 2021. Measuring Recommender System
Effects with Simulated Users. arXiv:2101.04526 [cs.LG]

[58] Shin Yoo andMarkHarman. 2012. Regression TestingMinimisation, Selection and
Prioritisation: A Survey. Journal of Software Testing, Verification and Reliability
22, 2 (2012), 67–120.

[59] Jinsung Yoon, Ahmed Alaa, Scott Hu, and Mihaela Schaar. 2016. ForecastICU:
A Prognostic Decision Support System for Timely Prediction of Intensive Care
Unit Admission. In Proceedings of The 33rd International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 48), Maria Florina Balcan
and Kilian Q. Weinberger (Eds.). PMLR, 1680–1689. http://proceedings.mlr.press/
v48/yoon16.html

[60] Shuo Zhang and Krisztian Balog. 2020. Evaluating Conversational Recommender
Systems via User Simulation. Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining (Aug. 2020), 1512–1520. https:
//doi.org/10.1145/3394486.3403202 arXiv: 2006.08732.

[61] Yan Zheng, Changjie Fan, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng
Meng, Yang Liu, Ruimin Shen, and Yingfeng Chen. 2019. Wuji: Automatic Online
Combat Game Testing Using Evolutionary Deep Reinforcement Learning. In
Automated software engineering (ASE). IEEE, 772–784.

http://proceedings.mlr.press/v106/kyono19a.html
https://www.smartcitylab.com/blog/digital-transformation/singapore-experiments-with-its-digital-twin-to-improve-city-life/
https://www.smartcitylab.com/blog/digital-transformation/singapore-experiments-with-its-digital-twin-to-improve-city-life/
https://arxiv.org/abs/1803.10254
https://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/2103.08057
https://doi.org/doi:10.1109/TEVC.2017.2693219
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.1109/ACCESS.2020.2970143
http://arxiv.org/abs/1808.00720
https://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
https://arxiv.org/pdf/1805.03382.pdf
https://arxiv.org/pdf/1805.03382.pdf
https://doi.org/10.1109/MIC.2017.72
https://doi.org/10.1109/MIC.2017.72
https://arxiv.org/abs/2009.09945
https://arxiv.org/abs/2011.02260
https://arxiv.org/abs/2101.04526
http://proceedings.mlr.press/v48/yoon16.html
http://proceedings.mlr.press/v48/yoon16.html
https://doi.org/10.1145/3394486.3403202
https://doi.org/10.1145/3394486.3403202

	Abstract
	1 Introduction
	2 The Simulation Hierarchy
	3 Verification and Validation of Simulation Outcomes
	4 Realistic Bots
	5 Facebook's WW Micro-service Architecture for User Simulation
	6 Open Challenges in applying Cyber–Cyber Digital Twins to Web Enabled Simulation 
	7 Further Software Engineering Applications of Cyber–Cyber Digital Twins
	8 Related Work
	8.1 Digital twins in healthcare
	8.2 Simulation for Recommender Systems
	8.3 Game Simulations and Learned Models

	References

