179 research outputs found

    Trace element distribution and arsenic speciation in toenails as affected by external contamination and evaluation of a cleaning protocol

    Get PDF
    Open Access via the ACS agreement This research was performed on the XFM beamline at the Australian Synchrotron, part of ANSTO. Special thanks to Prof Dr Rajiv Chowdhury (University of Florida, Miami, USA) for the financial and academic support as scientific manager of the BRAVE study while at the University of Cambridge (Cambridge, UK). We gratefully acknowledge the contributions of all BRAVE study participants, the scientific staff of the collaborating centre icddr,b and the recruitment centre NICVD in Bangladesh. Epidemiological fieldwork in BRAVE has been supported by grants to the coordination centre for BRAVE at the British Heart Foundation (BHF) Cardiovascular Epidemiology Unit (CEU) at the University of Cambridge. The CEU is underpinned by programme grants from the: BHF (RG/13/13/30194; RG/18/13/33946), UK Medical Research Council (MR/L003120/1) and NIHR Cambridge Biomedical Research Centre (BRC-1215-20014; NIHR203312) [*]. *The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care.Peer reviewe

    Silver speciation and release in commercial antimicrobial textiles as influenced by washing

    Get PDF
    The use of nanoscale Ag in textiles is one the most often mentioned uses of nano-Ag. It has previously been shown that significant amounts of the Ag in the textiles are released upon washing. However, the form of Ag present in the textiles remains largely unknown as product labelling is insufficient. The aim of this study was therefore to investigate the solid phase speciation of Ag in original and washed silver textiles using XANES. The original Ag speciation in the textiles was found to vary greatly between different materials with Ag(0), AgCl, Ag2S, Ag–phosphate, ionic Ag and other species identified. Furthermore, within the same textile a number of different species were found to coexist. This is likely due to a combination of factors such as the synthesis processes at industrial scale and the possible reaction of Ag with atmospheric gases. Washing with two different detergents resulted in marked changes in Ag-speciation. For some textiles the two detergents induced similar transformation, in other textiles they resulted in very different Ag species. This study demonstrates that in functional Ag textiles a variety of different Ag species coexist before and after washing. These results have important implications for the risk assessment of Ag textiles because they show that the metallic Ag is only one of the many silver species that need to be considered

    Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils

    Get PDF
    A wide range of methods are used to estimate the plant-availability of soil phosphorus (P). Published research has shown that the diffusive gradients in thin films (DGT) technique has a superior correlation to plant-available P in soils compared to standard chemical extraction tests. In order to identify the plant-available soil P species, we combined DGT with infrared and P K- and L2,3-edge X-ray adsorption near-edge structure (XANES) spectroscopy. This was achieved by spectroscopically investigating the dried binding layer of DGT devices after soil deployment. All three spectroscopic methods were able to distinguish between different kinds of phosphates (poly-, trimeta-, pyro- and orthophosphate) on the DGT binding layer. However, infrared spectroscopy was most sensitive to distinguish between different types of adsorbed inorganic and organic phosphates. Furthermore, intermediates of the time-resolved hydrolysis of trimetaphosphate in soil could be analyzed

    Zinc speciation in organic waste drives its fate in amended soils

    Get PDF
    Recycling of organic waste (OW) as fertilizer on farmland is a widespread practice that fosters sustainable development via resource reuse. However, the advantages of OW fertilization should be weighed against the potentially negative environmental impacts due to the presence of contaminants such as zinc (Zn). Current knowledge on the parameters controlling the environmental fate of Zn following OW application on cultivated soils is scant. We addressed this shortcoming by combining soil column experiments and Zn speciation characterization in OWs and amended soils. Soil column experiments were first carried out using two contrasted soils (sandy soil and sandy clay loam) that were amended with sewage sludge or poultry manure and cropped with lettuce. The soil columns were irrigated with identical amounts of water twice a week, and the leachates collected at the column outlet were monitored and analyzed. This scheme (OW application and lettuce crop cycle) was repeated for each treatment. Lettuce yields and Zn uptake were assessed at the end of each cycle. The soil columns were dismantled and seven soil layers were sampled and analyzed at the end of the second cycle (total experiment time: 12 weeks). X-ray absorption spectroscopy analyses were then conducted to assess Zn speciation in OW and OW-amended soils. The results of this study highlighted that (i) the fate of Zn in water–soil–plant compartments was similar, regardless of the type of soil and OW, (ii) >97.6% of the Zn input from OW accumulated in the soil surface layer, (iii) Zn uptake by lettuce increased with repeated OW applications, and (iv) no radical change in Zn speciation was observed at the end of the 12-week experiment, and phosphate was found to drive Zn speciation in both OW and amended soils (i.e., amorphous Zn-phosphate and Zn sorbed on hydoxylapatite). These results suggest that Zn speciation in OW is a key determinant controlling the environmental fate of this element in OW-amended soils

    Novel application of X-ray fluorescence microscopy (XFM) for the non-destructive micro-elemental analysis of natural mineral pigments on Aboriginal Australian objects

    Get PDF
    Open Access Article. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.This manuscript presents the first non-destructive synchrotron micro-X-ray fluorescence study of natural mineral pigments on Aboriginal Australian objects. Our results demonstrate the advantage of XFM (X-ray fluorescence microscopy) of Aboriginal Australian objects for optimum sensitivity, elemental analysis, micron-resolution mapping of pigment areas and the method also has the advantage of being non-destructive to the cultural heritage objects. Estimates of pigment thickness can be calculated. In addition, based on the elemental maps of the pigments, further conclusions can be drawn on the composition and mixtures and uses of natural mineral pigments and whether the objects were made using traditional or modern methods and materials. This manuscript highlights the results of this first application of XFM to investigate complex mineral pigments used on Aboriginal Australian objects

    Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata

    Get PDF
    Pteris vittata is the first plant reported to be a hyperaccumulator of arsenic (As), and little is known about the mechanisms of As hyperaccumulation in this plant. Arsenic distribution at the whole plant (fronds) and cellular level was investigated using chemical analyses and energy dispersive X-ray microanalyses (EDXA). Speciation of As in the fronds was determined using X-ray absorption near edge spectroscopy (XANES) analyses. The majority of As was found in the pinnae (96% of total As). The concentration of As in pinnae decreased from the base to the apex of the fronds. Arsenic concentrations in spores and midribs were much lower than in the pinnae. EDXA analyses revealed that As was compartmentalized mainly in the upper and lower epidermal cells, probably in the vacuoles. The distribution pattern of potassium was similar to As, whereas other elements (Ca, Cl, K, Mg, P and S) were distributed differently. XANES analyses showed that approximately 75% of the As in fronds was present in the As(III) oxidation state and the remaining as As(V)

    Megapixel imaging of (micro)nutrients in mature barley grains

    Get PDF
    Understanding the accumulation and distribution of essential nutrients in cereals is of primary importance for improving the nutritional quality of this staple food. While recent studies have improved the understanding of micronutrient loading into the barley grain, a detailed characterization of the distribution of micronutrients within the grain is still lacking. High-definition synchrotron X-ray fluorescence was used to investigate the distribution and association of essential elements in barley grain at the micro scale. Micronutrient distribution within the scutellum and the embryo was shown to be highly variable between elements in relation to various morphological features. In the rest of the grain, the distribution of some elements such as Cu and Zn was not limited to the aleurone layer but extended into the endosperm. This pattern of distribution was less marked in the case of Fe and, in particular, Mn. A significant difference in element distribution was also found between the ventral and dorsal part of the grains. The correlation between the elements was not consistent between and within tissues, indicating that the transport and storage of elements is highly regulated. The complexity of the spatial distribution and associations has important implications for improving the nutritional content of cereal crops such as barley
    corecore